Skip to main content Accessibility help

Analysis of a folded reflect-array antenna using particle swarm optimization

  • Sabine Dieter (a1), Christoph Fischer (a1) and Wolfgang Menzel (a1)


In this paper, a method for design and optimization of folded reflect-array antennas is proposed based on particleswarm optimization (PSO). In addition to such a powerful optimization algorithm, two further requirements have to be fulfilled. The first one is a good and fast algorithm for the exact prognosis of the far-field radiation diagram, resulting from a specific element configuration on the reflector. Additionally, a good choice of the fitness function for the evaluation of the resulting radiation diagrams is necessary. In both, reflect-array-related aspects such as phase truncation, reflection losses, and cell discontinuities have to be considered. Antenna optimization based on this technique is presented in this paper at the example of two 77 GHz folded reflect-array antennas. The efficiency of this approach is demonstrated with these examples, and the results are verified by measurement, showing an excellent agreement with the specifications of the diagram masks. The implemented tool, including a realistic antenna diagram preview, allows the investigation of the design parameters’ influence on the antenna performance, such as illumination amplitude, high substrate losses, and phase truncation.


Corresponding author

Corresponding author: S. Dieter Email:


Hide All
[1]Pozar, D.M.; Targonski, S.D.; Pokuls, R.: A shaped-beam microstrip patch reflectarray. IEEE Trans. Antennas Propag., 47 (1999), 11671173.
[2]Menzel, W.; Pilz, D.; Al-Tikriti, M.: Millimeter-wave folded reflector antennas with high gain, low loss, and low profile. IEEE Antennas Propag. Mag., 44 (2002), 2429.
[3]Zeitler, A.; Lanteri, J.; Pichot, C.; Miglaccio, C.; Feil, P.; Menzel, W.: Folded reflectarrays with shaped beam pattern for foreign object debris detection on runways. IEEE Trans. Antennas Propag, 58 (9) (2010), 30653068.
[4]Feil, P.; Mayer, W.; Menzel, W.: A 77 GHz eight-channel shaped beam planar reflector antenna, in 3rd European Conf. on Antennas and Propagation (EuCAP), March 2009, pp. 13201323.
[5]ANSYS: Ansoft Designer 5.0.2., ANSYS Inc., Canonsburg, PA, USA, 2010.
[6]Kennedy, J.; Eberhart, R.: Particle swarm optimization, in IEEE Int. Conf. on Neuronal Networks, December 1995, vol. 4, pp. 19421948.
[7]Clerc, M.; Kennedy, J.: The particle swarm – explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6 (2002), 5873.
[8]Robinson, J.; Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propaga., 52 (2004), 397407.
[9]Xu, S.; Rahmat-Samii, Y.: Boundary conditions in particle swarm optimization revisited. IEEE Trans. Antennas Propag., 55 (2007), 760–756.
[10]Dieter, S.; Fischer, C.; Menzel, W.: Design of a folded reflectarray antenna using particle swarm optimization. in 40th European Microwave Conf., September 2010, pp. 731734.
[11]Gatti, R.V.; Maraccioli, L.; Sorrentino, R.: A novel phase-only method for shaped beam synthesis and adaptive nulling, in 33rd European Microwave Conf., October 2003, pp. 739742.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed