Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-14T15:29:11.700Z Has data issue: false hasContentIssue false

A low-loss, continuously tunable microwave notch filter

Published online by Cambridge University Press:  16 April 2015

Öncel Acar*
Affiliation:
MTI Radiocomp, Krakasvej 17, 3400 Hillerød, Denmark DTU Electrical Engineering, Ørsteds Plads Building 348, 2800 Lyngby, Denmark
Tom K. Johansen
Affiliation:
DTU Electrical Engineering, Ørsteds Plads Building 348, 2800 Lyngby, Denmark
Vitaliy Zhurbenko
Affiliation:
DTU Electrical Engineering, Ørsteds Plads Building 348, 2800 Lyngby, Denmark
*
Corresponding author: Ö. Acar Email: oncac@elektro.dtu.dk

Abstract

The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies. With this motivation, this work presents a tuning method that delivers a resonator Q0 of 2000–3621 within a minimum tuning ratio of 1:1.42. A continuously tunable notch filter based on this tuning method is presented. The design is manufactured, measured, and verified. It is shown that the tuning technology compares favorably to other selected technologies.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bagheri, R.; Mirzaei, A.; Heidari, M.E.; Chehrazi, S.; Lee, M.; Mikhemar, M.; Tang, W.K.; Abidi, A.A.: Software-defined radio receiver: dream to reality. IEEE Commun. Mag., 44 (8) (2006), 111118.CrossRefGoogle Scholar
[2]Zhang, X.Y.; Chan, C.H.; Xue, Q.; Hu, B-J.: RF Tunable bandstop filters with constant bandwidth based on a doublet configuration. IEEE Trans. Ind. Electron., 59 (2) (2012), 12571265.CrossRefGoogle Scholar
[3]Naglich, E.J.; Guyette, A.C., Peroulis, D.: High-Q intrinsically-switched quasi-absorptive tunable bandstop filter with electrically-short resonators, in IEEE MTT-S Int. Microwave Symp. IEEE, June 2014, 1–4.CrossRefGoogle Scholar
[4]Jia, D.; Feng, Q.; Huang, X.; Xiang, Q.: Microstrip tunable bandstop filter with constant absolute bandwidth. J. Electromagn. Waves App., 28 (7) (2014), 815826.CrossRefGoogle Scholar
[5]Cheng, C.-C.; Rebeiz, G.M.: A Three-Pole 1.2–2.6-GHz RF MEMS Tunable Notch Filter With 40-dB Rejection and Bandwidth Control. IEEE Trans. Microw. Theory Tech., 60 (8) (2012), 24312438.CrossRefGoogle Scholar
[6]Carey-Smith, B.E., Warr, P.A.: Broadband-configurable bandstop-filter design employing a composite tuning mechanism. IET Microw. Antennas Propag., 1 (2) (2007), 420426.CrossRefGoogle Scholar
[7]Krupka, J.; Abramowicz, A.; Derzakowski, K.: Magnetically tunable filters for cellular communication terminals. IEEE Trans. Microw. Theory Tech., 54 (6) (2006), 23292335.CrossRefGoogle Scholar
[8]Naser-Moghadasi, M.; Sadeghzadeh-Sheikhan, R.: Ferrite tuned dual-mode dielectric resonator filters. 2006 2nd Int. Conf. Inf. Commun. Technol., 2 (2006), 2182–2186.Google Scholar
[9]Park, S.-J.; El-Tanani, M.A.; Reines, I.; Rebeiz, G.M.: Low-loss 4–6-GHz tunable filter with 3-bit high-Q orthogonal bias RF-MEMS capacitance network. IEEE Trans. Microw. Theory Tech., 56 (10) (2008), 23482355.CrossRefGoogle Scholar
[10]Huang, F.; Mansour, R.R.: Tunable compact dielectric resonator filters, in 2009 European Microwave Conf., 1–3(October), 2009, 559–562.CrossRefGoogle Scholar
[11]Yassini, B.; Smith, D.; Kellett, S.: A Ku-band high-Q tunable filter with stable tuning response. IEEE Trans. Microw. Theory Tech., 57 (12) (2009), 29482957.CrossRefGoogle Scholar
[12]El-Tanani, M.A.; Rebeiz, G.M.: High-Performance 1.5–2.5-GHz RF-MEMS Tunable Filters for Wireless Applications. IEEE Trans. Microw. Theory Tech., 58 (6) (2010), 16291637.CrossRefGoogle Scholar
[13]Liu, X.; Katehi, L.P.B.; Chappell, W.J.; Peroulis, D.: High-Q tunable microwave cavity resonators and filters using SOI-based RF MEMS tuners. J. Microelectromech. Syst., 19 (4) (2010), 774784.CrossRefGoogle Scholar
[14]Reines, I.; Patel, C.; Rebeiz, G.M.: High-Q RF-MEMS 4–6-GHz tunable evanescent-mode cavity filter. IEEE Trans. Microw. Theory Tech., 58 (2) (2010), 381389.Google Scholar
[15]Moon, S.; Sigmarsson, H.H.; Joshi, H.; Chappell, W.J.: Substrate integrated evanescent-mode cavity filter with a 3.5 to 1 tuning ratio. IEEE Microw. Wireless Compon. Lett., 20 (8) (2010), 450452.CrossRefGoogle Scholar
[16]Arif, M.S.; Irshad, W.; Liu, X.; Chappell, W.J.; Peroulis, D.: A high-Q magnetostatically-tunable all-silicon evanescent cavity resonator, In 2011 IEEE MTT-S Int. Microwave Symp., IEEE, June 2011, 1–4.CrossRefGoogle Scholar
[17]Huang, F.; Fouladi, S.; Mansour, R.R.: High-Q tunable dielectric resonator filters using MEMS technology. IEEE Trans. Microw. Theory Tech., 59 (12) (2011), 34013409.CrossRefGoogle Scholar
[18]Fouladi, S.; Huang, F.; Yan, W.D.; Mansour, R.R.: High-Q narrowband tunable combline bandpass filters using MEMS capacitor banks and piezomotors. IEEE Trans. Microw. Theory Tech., 61 (1) (2013), 393402.CrossRefGoogle Scholar
[19]Petrov, P.K.; Alford, N.McN.; Buslov, O.; Keis, V.; Kotelnikov, I.; Kulik, P.; Kozyrev, A.: Tuneable two-pole one-dielectric-resonator filter with elliptic characteristics. Integr. Ferroelectr., 66 (1) (2004), 261266.CrossRefGoogle Scholar
[20]Carter, P.S.: Magnetically-tunable microwave filters using single-crystal yttrium-iron-garnet resonators. IEEE Trans. Microw. Theory Tech., 9 (3) (1961), 252260.CrossRefGoogle Scholar
[21]Levy, R.; Snyder, R.V.; Matthaei, G.: Design of microwave filters. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 783793.CrossRefGoogle Scholar
[22]Earley, L.M.; Thiessen, H.A.; Carlini, R.; Potter, J.: A high-Q ferrite-tuned cavity. IEEE Trans. Nucl. Sci., 30 (4) (1983), 34603462.CrossRefGoogle Scholar
[23]Poirier, R.L.: Perpendicular biased ferrite-tuned cavities, In Proc. of Int. Conf. on Particle Accelerators, 1993, 753–757.Google Scholar
[24]Polder, D.: On the theory of ferromagnetic resonance. Physica, 15 (1–2) (1949), 253255.CrossRefGoogle Scholar
[25]Brodwin, M.E.; Miller, D.A.: Propagation of the quasi-TEM mode in ferrite-filled coaxial line. IEEE Trans. Microw. Theory Tech., 12 (5) (1964), 496503.CrossRefGoogle Scholar
[26]Cruickshank, D.: Microwave Materials for Wireless Applications, Artech House, Norwood, 2011.Google Scholar
[27]National Magnetics Group|TCI Ceramics. Magnetic and Advanced Ceramic Materials. Available: http://magneticsgroup.com/pdf/NMG_catalog_0405.pdfGoogle Scholar
[28]Kajfezm, D.; Hwan, E.J.: Q-factor measurement with network analyzer. IEEE Trans. Microw. Theory Tech., 32 (7) (1984), 666670.CrossRefGoogle Scholar
[29]Kasa, I.: A circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas., IM-25 (1) (1976), 814.CrossRefGoogle Scholar
[30]Schloemann, E.: Theory of low-field loss in partially magnetized ferrites. IEEE Trans. Magn., 28 (5) (1992), 33003302.CrossRefGoogle Scholar
[31]Okamura, T.; Fujimura, T.; Date, M.: Dielectric constant and permeability of various ferrites in the microwave region. Phys. Rev., 88 (6) (1952), 14351435.CrossRefGoogle Scholar
[32]Blair, W.D.: Tunable high-Q dielectric loaded resonator and filter, In Proc. of the RAWCON 2002. 2002 IEEE Radio and Wireless Conf. (Cat. No.02EX573), IEEE, 2002, 249–252.Google Scholar
[33]Poplavko, Yu.M.; Prokopenko, Yu.V.; Molchanov, V.I.; Dogan, A.: Frequency-tunable microwave dielectric resonator. IEEE Trans. Microw. Theory Tech., 49 (6) (2001), 10201026.CrossRefGoogle Scholar