Skip to main content Accessibility help
×
Home

Fractal antenna arrays for MIMO radar applications

Published online by Cambridge University Press:  26 October 2017

Christoph Dahl
Affiliation:
Institute of Microwave Systems, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
Michael Vogt
Affiliation:
Institute of Electronic Circuits, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
Ilona Rolfes
Affiliation:
Institute of Microwave Systems, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
Corresponding
E-mail address:

Abstract

In this contribution, fractal antenna arrays are analyzed for their applicability in multiple-input multiple-output (MIMO) radars. Array geometries based on the Fudgeflake fractal and the Gosper island fractal are investigated. In addition, a concept for the combination of both fractals is shown in order to increase the flexibility concerning the number of transmitting and receiving antennas. The presented fractal MIMO concepts can be utilized in order to improve the angular resolution and to reduce the sidelobe level for a given number of transmitting and receiving antennas. It is shown that a fractal MIMO concept with 21 transmitting antennas and 21 receiving antennas improves the angular resolution to 4.6 degrees and reduces side lobe level by 3.1 dB compared to a MIMO configuration based on two linear arrays with the same number of antenna elements. In addition, the results are experimentally validated by broadband radar measurements.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Dahl, C.; Vogt, M.; Rolfes, I.: Comparison of virtual arrays for MIMO radar applications based on hexagonal configurations, in European Radar Conf. (EuRAD), Paris, France, 2015.Google Scholar
[2] Zankl, D. et al. : BLASTDAR – a large radar sensor array system for blast furnace burden surface imaging. IEEE Sens. J., 15 (2015), 58935909.CrossRefGoogle Scholar
[3] Ahmed, S.; Schiess, A.; Schmidt, L.: Near field mm-wave imaging with multistatic sparse 2d-arrays, in European Radar Conf. (EuRAD), Rome, Italy, 2009.Google Scholar
[4] Volakis, J.: Antenna Engineering Handbook, 4th ed., McGraw-Hill Education, New York City, United States, 2007.Google Scholar
[5] Harter, M. et al. : 2-d antenna array geometries for MIMO radar imaging by digital beamforming, in European Microwave Conf. (EuMC), Nuremberg, Germany, 2013.Google Scholar
[6] Zhuge, X.; Yarovoy, A.: Study on two-dimensional sparse MIMO UWB arrays for high resolution near-field imaging. IEEE Trans. Antennas Propag., 60 (2012), 41734182.CrossRefGoogle Scholar
[7] Werner, D.; Kuhirun, W.; Werner, P.L.: Fractile arrays: a new class of tiled arrays with fractal boundaries. IEEE Trans Antennas Propag., 52 (2004), 20632072.CrossRefGoogle Scholar
[8] Li, J.; Stoica, P.: MIMO Radar Signal Processing. John Wiley and Sons Inc., New York City, United States, 2009.Google Scholar
[9] Bleh, D. et al. : A 100 GHz FMCW MIMO radar system for 3D image reconstruction, in European Radar Conf. (EuRAD), London, UK, 2016.Google Scholar
[10] Duofang, C.; Baixiao, C.; Shouhong, Z.: Multiple-input multiple-output radar and sparse array synthetic impulse and aperture radar, in CIE International Conf. on Radar, Shanghai, China, 2006.Google Scholar
[11] Dahl, C.; Vogt, M.; Rolfes, I.: Mimo radar concepts based on antenna arrays with fractal boundaries, in European Radar Conf. (EuRAD), London, UK, 2016.Google Scholar
[12] Werner, D.; Kuhirun, W.; Werner, P.: The peano-gosper fractal array. IEEE Trans. Antennas Propag., 51 (2003), 20632072.CrossRefGoogle Scholar
[13] Jianguo, L.; Jianguo, L.; Bingcheng, Y.: A new design method of wideband beam-former, in International Conf. on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2009.Google Scholar
[14] Qu, H.; Zhai, L.: Optimization of Sparse synthesis aperture imaging array on hexagonal grids with difference basis, in IEEE Int. Conf. on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, 2014.Google Scholar
[15] Zapata, J.; Ritter, G.: Fast Fourier transform for hexagonal aggregates. J. Math. Imaging Vis., 12 (2000), 183197.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 35
Total number of PDF views: 127 *
View data table for this chart

* Views captured on Cambridge Core between 26th October 2017 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-6585876b8c-zwpdr Total loading time: 0.375 Render date: 2021-01-28T09:31:27.492Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fractal antenna arrays for MIMO radar applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fractal antenna arrays for MIMO radar applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fractal antenna arrays for MIMO radar applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *