## References

1Guarin, G, Hofmann, M, Nehring, J, Weigel, R, Fischer, G and Kissinger, D (2015) Miniature microwave biosensors. *IEEE Microwave Magazine*, pp. 71–86.

2Nasr, I, Nehring, J, Aufinger, K, Fischer, G, Weigel, R and Kissinger, D (2014) Single- and dual-port 50-100-GHz integrated vector network analyzers with on-chip dielectric sensors. IEEE Transactions on Microwave Theory and Techniques 62(9), 2168–2179.

3Böck, J, Schäfer, H, Aufinger, K, Stengl, R, Boguth, S, Schreiter, R, Rest, M, Knapp, H, Wurzer, M, Perndl, W, Böttner, T and Meister, TF (2004) SiGe bipolar technology for automotive radar applications. *IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Montreal, Canada*, pp. 84–87.

4Vytla, RK, Meister, TF, Aufinger, K, Lukashevich, D, Boguth, S, Knapp, H, Böck, J, Schäfer, H and Lachner, R (2006) Simultaneous integration of SiGe high speed transistors and high voltage transistors. *IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Maastricht, The Netherlands*, pp. 1–4.

5Dunsmore, JP (2012) Handbook of Microwave Component Measurements: with Advanced VNA Techniques. Chichester, UK: John Wiley & Sons, Ltd.

6Razavi, B (2008) Fundamentals of Microelectronics. Hoboken, NJ, USA: Wiley.

7Gray, PR, Hurst, PJ, Lewis, SH and Meyer, RG (2010) Analysis and Design of Analog Integrated Circuits, 5th Edn, international student version. Hoboken and NJ: Wiley.

8Lee, T (2004) The Design of CMOS Radio-frequency Integrated Circuits, 2nd Edn. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Dehli, Mexico City: Cambridge University Press.

9Trotta, S, Knapp, H, Aufinger, K, Meister, TF, Böck, J, Dehlink, B, Simbürger, W and Scholtz, AL (2007) An 80 GHz bandwidth and 20 dB gain broadband amlifier in SiGe bipolar technology. IEEE Journal of Solid-State Circuits 42(10), 2099–2106.

10Rogers, J and Plett, C (2003) Radio Frequency Integrated Circuit Design. Bosten & London, US: Artech House, Inc.

11Ellinger, F (2007) Radio Frequency Integrated Circuits and Technologies. Berlin, Heidelberg, Germany: Springer-Verlag.

12Rollet, JM (1962) Stability and power-gain invariants of linear twoports. *IRE Transactions on Circuit Theory, CT-9*, pp. 29–32.

13Schmid, RL, Coen, CT, Shankar, S and Cressler, JD (2012) Best practices to ensure the stability of SiGe HBT cascode low noise amplifiers. *IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Portland, Oregon*, pp. 1–4.

14Voinigescu, S (2013) High-Frequency Integrated Circuits. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Dehli, Mexico City: Cambridge University Press.

15Razavi, B (2012) RF Microelectronics, 2nd Edn. New Jersey, US: Pearson Education.

16Shi, B and Chia, MYW (2010) Design of a CMOS UWB receiver front-end with noise-cancellation and current-reuse. *Proceedings of 2010 IEEE International Conference on Ultra-Wideband (ICUWB 2010)*, pp. 1–4.

17Lin, Y-S, Lee, J-H, Huang, S-L, Wang, C-H, Wang, C-C and Lu, S-S (2012) Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18-μm CMOS technology. IEEE Transactions on Microwave Theory and Techniques 60(8), 2590–2604.

18Joram, N, Wagner, J, Sobotta, E and Ellinger, F (2015) Fully integrated wideband sub-10 GHz radio frequency front end with active matching. *11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)*, pp. 1–4.

19Park, B, Lee, K, Choi, S and Hong, S (2010) A 3.1–10.6 GHz RF receiver front-end in 0.18 um CMOS for ultra-wideband applications. *2010 IEEE MTT-S International Microwave Symposium (IMS)*, pp. 1616–1619.