Skip to main content Accessibility help
×
Home

A 1 to 32 GHz broadband multi-octave receiver for monolithic integrated vector network analyzers in SiGe technology

  • Marco Dietz (a1), Andreas Bauch (a1), Klaus Aufinger (a2), Robert Weigel (a1) and Amelie Hagelauer (a1)...

Abstract

A multi-octave receiver chain is presented for the use in a monolithic integrated vector network analyzer. The receiver exhibits a very wide frequency range of 1–32 GHz, where the gain meets the 3 dB-criterion. The differential receiver consists of an ultra-wideband low noise amplifier, an active mixer and an output buffer and exhibits a maximum conversion gain (CG) of 16.6 dB. The main design goal is a very flat CG over five octaves, which eases calibration of the monolithic integrated vector network analyzer. To realize variable gain functionality, without losing much input matching, an extended gain control circuit with additional feedback branch is shown. For the maximum gain level, a matching better than −10 dB is achieved between 1–28 GHz, and up to 30.5 GHz the matching is better than −8.4 dB. For both, the input matching and the gain of the LNA, the influence of the fabrication tolerances are investigated. A second gain control is implemented to improve isolation. The measured isolations between RF-to-LO and LO-to-RF are better than 30 dB and 60 dB, respectively. The LO-to-IF isolation is better than 35 dB. The noise figure of the broadband receiver is between 4.6 and 5.8 dB for 4–32 GHz and the output referred 1-dB-compression-point varies from 0.1 to 4.3 dBm from 2–32 GHz. The receiver draws a current of max. 66 mA at 3.3 V.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A 1 to 32 GHz broadband multi-octave receiver for monolithic integrated vector network analyzers in SiGe technology
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A 1 to 32 GHz broadband multi-octave receiver for monolithic integrated vector network analyzers in SiGe technology
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A 1 to 32 GHz broadband multi-octave receiver for monolithic integrated vector network analyzers in SiGe technology
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: Marco Dietz, E-mail: marco.dietz@fau.de

References

Hide All
1Guarin, G, Hofmann, M, Nehring, J, Weigel, R, Fischer, G and Kissinger, D (2015) Miniature microwave biosensors. IEEE Microwave Magazine, pp. 7186.
2Nasr, I, Nehring, J, Aufinger, K, Fischer, G, Weigel, R and Kissinger, D (2014) Single- and dual-port 50-100-GHz integrated vector network analyzers with on-chip dielectric sensors. IEEE Transactions on Microwave Theory and Techniques 62(9), 21682179.
3Böck, J, Schäfer, H, Aufinger, K, Stengl, R, Boguth, S, Schreiter, R, Rest, M, Knapp, H, Wurzer, M, Perndl, W, Böttner, T and Meister, TF (2004) SiGe bipolar technology for automotive radar applications. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Montreal, Canada, pp. 8487.
4Vytla, RK, Meister, TF, Aufinger, K, Lukashevich, D, Boguth, S, Knapp, H, Böck, J, Schäfer, H and Lachner, R (2006) Simultaneous integration of SiGe high speed transistors and high voltage transistors. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Maastricht, The Netherlands, pp. 14.
5Dunsmore, JP (2012) Handbook of Microwave Component Measurements: with Advanced VNA Techniques. Chichester, UK: John Wiley & Sons, Ltd.
6Razavi, B (2008) Fundamentals of Microelectronics. Hoboken, NJ, USA: Wiley.
7Gray, PR, Hurst, PJ, Lewis, SH and Meyer, RG (2010) Analysis and Design of Analog Integrated Circuits, 5th Edn, international student version. Hoboken and NJ: Wiley.
8Lee, T (2004) The Design of CMOS Radio-frequency Integrated Circuits, 2nd Edn. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Dehli, Mexico City: Cambridge University Press.
9Trotta, S, Knapp, H, Aufinger, K, Meister, TF, Böck, J, Dehlink, B, Simbürger, W and Scholtz, AL (2007) An 80 GHz bandwidth and 20 dB gain broadband amlifier in SiGe bipolar technology. IEEE Journal of Solid-State Circuits 42(10), 20992106.
10Rogers, J and Plett, C (2003) Radio Frequency Integrated Circuit Design. Bosten & London, US: Artech House, Inc.
11Ellinger, F (2007) Radio Frequency Integrated Circuits and Technologies. Berlin, Heidelberg, Germany: Springer-Verlag.
12Rollet, JM (1962) Stability and power-gain invariants of linear twoports. IRE Transactions on Circuit Theory, CT-9, pp. 2932.
13Schmid, RL, Coen, CT, Shankar, S and Cressler, JD (2012) Best practices to ensure the stability of SiGe HBT cascode low noise amplifiers. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Portland, Oregon, pp. 14.
14Voinigescu, S (2013) High-Frequency Integrated Circuits. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Dehli, Mexico City: Cambridge University Press.
15Razavi, B (2012) RF Microelectronics, 2nd Edn. New Jersey, US: Pearson Education.
16Shi, B and Chia, MYW (2010) Design of a CMOS UWB receiver front-end with noise-cancellation and current-reuse. Proceedings of 2010 IEEE International Conference on Ultra-Wideband (ICUWB 2010), pp. 14.
17Lin, Y-S, Lee, J-H, Huang, S-L, Wang, C-H, Wang, C-C and Lu, S-S (2012) Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18-μm CMOS technology. IEEE Transactions on Microwave Theory and Techniques 60(8), 25902604.
18Joram, N, Wagner, J, Sobotta, E and Ellinger, F (2015) Fully integrated wideband sub-10 GHz radio frequency front end with active matching. 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 14.
19Park, B, Lee, K, Choi, S and Hong, S (2010) A 3.1–10.6 GHz RF receiver front-end in 0.18 um CMOS for ultra-wideband applications. 2010 IEEE MTT-S International Microwave Symposium (IMS), pp. 16161619.

Keywords

A 1 to 32 GHz broadband multi-octave receiver for monolithic integrated vector network analyzers in SiGe technology

  • Marco Dietz (a1), Andreas Bauch (a1), Klaus Aufinger (a2), Robert Weigel (a1) and Amelie Hagelauer (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed