Skip to main content Accessibility help

Sustainable life support on Mars – the potential roles of cyanobacteria

  • Cyprien Verseux (a1) (a2), Mickael Baqué (a1), Kirsi Lehto (a3), Jean-Pierre P. de Vera (a4), Lynn J. Rothschild (a5) and Daniela Billi (a1)...


Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sustainable life support on Mars – the potential roles of cyanobacteria
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sustainable life support on Mars – the potential roles of cyanobacteria
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sustainable life support on Mars – the potential roles of cyanobacteria
      Available formats


Corresponding author


Hide All
Abed, R.M.M., Dobretsov, S. & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106, 112.
Agarwal, R., Rane, S.S. & Sainis, J.K. (2008). Effects of 60Co γ radiation on thylakoid membrane functions in Anacystis nidulans . J. Photochem. Photobiol. 91, 919.
Aikawa, S., Joseph, A., Yamada, R., Izumi, Y., Yamagishi, T., Matsuda, F., Kawai, H., Chang, J.-S., Hasunuma, T. & Kondo, A. (2013). Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 6, 18441849.
Allen, C.C., Morris, R.V., Lindstrom, D.J., Lindstrom, M.M. & Lockwood, J.P. (1997). JSC Mars-1: Martian regolith simulant. In Lunar and Planetary Science XXVII, LPI Contribution No. 1593, Houston, TX, id. 1797.
Allen, C.S. et al. (2003). Guidelines and Capabilities for Designing Human Missions (NASA/TM–2003–210785) . NASA Johnson Space Center, Houston, TX.
Allen, J.L. (1991). Biosphere 2: the Human Experiment. Penguin Books, New York.
Andersson, C.R., Tsinoremas, N.F., Shelton, J., Lebedeva, N.V., Yarrow, J., Min, H. & Golden, S.S. (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527542.
Angermayr, S.A., Paszota, M. & Hellingwerf, K.J. (2012). Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol., 78, 70987106.
Arai, M., Tomita-Yokotani, K., Sato, S., Hashimoto, H., Ohmori, M. & Yamashita, M. (2008). Growth of terrestrial cyanobacterium, Nostoc sp., on Martian Regolith Simulant and its vacuum tolerance. Biol. Sci. Space 22, 817.
Arvidson, R., Squyres, S. & Bell, J. (2014). Ancient aqueous environments at Endeavour crater, Mars. Science 343, 18.
Asato, Y. (1971). Photorecovery of gamma irradiated cultures of blue-green alga, Anacystis nidulans . Radiat. Bot. 11, 313316.
Averner, M., Moore, B., Bartholomew, I. & Wharton, R. (1984). Atmosphere behavior in gas-closed mouse-algal systems: an experimental and modelling study. Adv. Space Res. 4, 231239.
Badri, H. Monsieurs, P., Coninx, I., Wattiez, R. & Leys, N. (2015). Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. MicrobiologyOpen 4, 187207.
Bajwa, R., Abuarghub, S. & Read, D.J. (1985). The biology of Mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol. 101, 469486.
Baker, D. & Zubrin, R. (1990). Mars direct: combining near-term technologies to achieve a two-launch manned Mars mission. J. Br. Interplanet. Soc. 43, 519526.
Banerjee, M. & Verma, V. (2009). Nitrogen fixation in endolithic cyanobacterial communities of the McMurdo Dry Valley, Antarctica. ScienceAsia 35, 215219.
Banin, A. (1989). Mars soil – a sterile regolith or a medium for plant growth? In The Case for Mars III, ed. Stoker, C.L., pp. 559571. Univelt, San Diego, CA.
Baqué, M., de Vera, J.-P., Rettberg, P. & Billi, D. (2013). The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronaut. 91, 180186.
Baqué, M., Verseux, C., Rabbow, E., de Vera, J.-P.P. & Billi, D. (2014). Detection of maromolecules in desert cyanobacteria mixed with a lunar mineral analogue after space simulations. Orig. Life Evol. Biosph. 44, 209221.
Barker, A.V. & Mills, H.A. (1980). Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2, 395423.
Beliaev, A.S. et al. (2014). Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing. ISME J. 8, 22432255.
Benoit, M.R. & Klaus, D.M. (2007). Microgravity, bacteria, and the influence of motility. Adv. Space Res. 39, 12251232.
Bentley, F.K., Zurbriggen, A. & Melis, A. (2014). Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant 7, 7186.
Bergman, B., Johansson, C. & Soderback, E. (1992). The Nostoc-Gunnera symbiosis. New Phytol. 122, 379400.
Berla, B.M., Saha, R., Immethun, C.M., Maranas, C.D., Moon, T.S. & Pakrasi, H.B. (2013). Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4, 246.
Billi, D. (2009). Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13, 4957.
Billi, D. (2010). Genetic tools for desiccation- and radiation-tolerant cyanobacteria of the genus Chroococcidiopsis . In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, ed. Méndez-Vilas, A., pp. 15171521. Formatex Research Center, Badajoz, Spain.
Billi, D. (2012). Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space. Orig. Life Evol. Biosph. 42, 235245.
Billi, D., Friedmann, E.I., Hofer, K.G., Caiola, M.G. & Ocampo-Friedmann, R. (2000a). Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis . Appl. Environ. Microbiol. 66, 14891492.
Billi, D., Wright, D.J., Helm, R.F., Prickett, T., Potts, M. & Crowe, J.H. (2000b). Engineering desiccation tolerance in Escherichia coli . Appl. Environ. Microbiol. 66, 16801684.
Billi, D., Baqué, M., Smith, H. & McKay, C. (2013). Cyanobacteria from extreme deserts to space. Adv. Microbiol. 3, 8086.
Bloom, A.J., Sukrapanna, S.S. & Warner, R.L. (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 12941301.
Blüm, V., Gitelson, J., Horneck, G. & Kreuzberg, K. (1994). Opportunities and constraints of closed man-made ecological systems on the moon. Adv. Space Res. 14, 271280.
Boison, G. & Mergel, A. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Appl. Environ. Microbiol. 70, 70707077.
Bonham, K. & Palumbo, R.F. (1951). Effects of x-rays on snails, crustacea, and algae. Growth 15, 155168.
Böttger, U., de Vera, J.-P., Fritz, J., Weber, I., Hübers, H.-W. & Schulze-Makuch, D. (2012). Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet. Space Sci. 60, 356362.
Boxe, C.S., Hand, K.P., Nealson, K.H., Yung, Y.L. & Saiz-Lopez, A. (2012). An active nitrogen cycle on Mars sufficient to support a subsurface biosphere. Int. J. Astrobiol. 11, 109115.
Boynton, W.V. et al. (2007). Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res.: Planets 112, E12.
Britto, D.T. & Kronzucker, H.J. (2002). NH4 + toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567584.
Brown, I.I. (2008a). Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes. In 37th COSPAR Scientific Assembly, Montréal, Canada, p. 383.
Brown, I.I. (2008b). Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems. In 37th COSPAR Scientific Assembly, Montréal, Canada, p. 384.
Brown, I.I. & Sarkisova, S. (2008). Bio-weathering of lunar and Martian rocks by cyanobacteria: a resource for Moon and Mars exploration. In Lunar and Planetary Sciences XXXIX, pp. 12.
Brown, I.I., Garrison, D.H., Jones, J.A., Allen, C.C., Sanders, G., Sarkisova, S.A. & McKay, D.S. (2008). The Development and Perspectives of Bio-ISRU. In Joint Annual Meeting of LEAG–ICEUM–SRR, Cape Canaveral, Florida, p. 4048.
Bruce, A.K. (1964). Extraction of the radioresistant factor of Micrococcus radiodurans . Radiat. Res. 22, 155164.
Cao, G., Concas, A., Corrias, G., Licheri, R., Orru’, R. & Pisu, M. (2014). Process for the production of useful materials for sustaining manned space missions on Mars through in-situ resources utilization. US Patent Application US 2014/016546 A1.
Chaurasia, A.K., Parasnis, A. & Apte, S.K. (2008). An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. J. Microbiol. Methods 73, 133141.
Chen, Y.-C. (2001). Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish. Aquaculture 195, 7180.
Christensen, P.R. et al. (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 2382323871.
Clapp, M. (1985). Water supply for a manned Mars base. In The Case for Mars II, ed. McKay, C.P., pp. 557566. Univelt, San Diego, CA.
Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L. & Candelaria, M.P. (1982). Chemical composition of Martian fines. J. Geophys. Res. Solid Earth 87, 1005910067.
Clerico, E.M., Ditty, J.L. & Golden, S.S. (2007). Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol. Biol. 362, 155171.
Clifford, S.M., Lasue, J., Heggy, E., Boisson, J., McGovern, P. & Max, M.D. (2010). Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001.
Cockell, C.S. (2010). Geomicrobiology beyond Earth: microbe–mineral interactions in space exploration and settlement. Trends Microbiol. 18, 308314.
Cockell, C.S. (2011). Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement. Int. J. Astrobiol. 10, 315324.
Cockell, C.S. (2014). Trajectories of Martian habitability. Astrobiology 14, 182203.
Cockell, C.S., Catling, D.C., Davis, W.L., Snook, K., Kepner, R.L., Lee, P. & McKay, C.P. (2000). The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146, 343359.
Cockell, C.S. & Raven, J.A. (2004). Zones of photosynthetic potential on Mars and the early Earth. Icarus 169, 300310.
Cockell, C.S., Rettberg, P., Rabbow, E. & Olsson-Francis, K. (2011). Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME J. 5, 16711682.
Coffin, R.B. (1989). Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34, 531542.
Conrad, T. (2011). Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7, 509.
Coons, S., Williams, J. & Bruckner, A. (1997). Feasibility study of water vapor adsorption on Mars for in situ resource utilization. In 33rd Joint Propulsion Conf. and Exhibit, Seattle, WA, AIAA 97–2765.
Crawford, C.C., Hobbie, J.E. & Webb, K.L. (1974). The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55, 551563.
Cumbers, J. & Rothschild, L.J. (2010). BISRU: synthetic microbes for Moon, Mars and beyond. In Astrobiology Science Conf. 2010, LPI Contribution No. 1538, League City, TX, id. 5672.
Dahlgren, R., Shoji, S. & Nanzyo, M. (1993). Mineralogical characteristics of volcanic ash soils. In Volcanic Ash Soils – Genesis, Properties and Utilization, ed. Shoji, S. & Nanzyo, M., pp. 101143. Elsevier Science Ltd, Amsterdam.
Dalton, B. & Roberto, F. (2008). Lunar Regolith Biomining: Workshop Report (NASA/CP-2008-214564) . NASA Ames Research Center, Moffett Field, CA.
Danin, A., Dor, I., Sandler, A. & Amit, R. (1998). Desert crust morphology and its relations to microbiotic succession at Mt. Sedom, Israel. J. Arid Environ. 38, 161174.
Dartnell, L.R. & Patel, M.R. (2014). Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. Int. J. Astrobiol. 13, 112123.
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett. 34, L02207.
de Crecy, E., Jaronski, S., Lyons, B., Lyons, T.J. & Keyhani, N.O. (2009). Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 9, 74.
de la Torre, J.R., Goebel, B.M., Friedmann, E.I. & Pace, N.R. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69, 38583867.
Deng, M.D. & Coleman, J.R. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523528.
de Vera, J.-P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D. & Spohn, T. (2014). Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet. Space Sci. 98, 182190.
Dexter, J. & Fu, P. (2009). Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2, 857.
Dienst, D., Georg, J., Abts, T., Jakorew, L., Kuchmina, E., Börner, T., Wilde, A., Dühring, U., Enke, H. & Hess, W.R. (2014). Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol. Biofuels 7, 21.
Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M. & Posewitz, M.C. (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235240.
Domain, F., Houot, L., Chauvat, F. & Cassier-Chauvat, C. (2004). Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol. Microbiol. 53, 6580.
Drake, B.G. (ed.) (2009). Human Exploration of Mars: Design Reference Architecture 5.0 (NASA-SP-2009-566). NASA Johnson Space Center, Houston, TX.
Drysdale, A., Ewert, M. & Hanford, A. (2003). Life support approaches for Mars missions. Adv. Space Res. 31, 5161.
Drysdale, A., Nakamura, T., Yorio, N., Sager, J. & Wheeler, R. (2008). Use of sunlight for plant lighting in a bioregenerative life support system – equivalent system mass calculations. Adv. Space Res. 42, 19291943.
Drysdale, A.E., Rutkze, C.J., Albright, L.D. & LaDue, R.L. (2004). The minimal cost of life in space. Adv. Space Res. 34, 15021508.
Ducat, D.C., Way, J.C. & Silver, P.A. (2011). Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29, 95103.
Dykhuizen, D.E. (1993). Chemostats used for studying natural selection and adaptive evolution. Methods Enzymol. 224, 613631.
Eldridge, D. & Greene, R. (1994). Microbiotic soil crusts-a review of their roles in soil and ecological processes in the rangelands of Australia. Soil Res. 32, 389415.
Elena, S.F. & Lenski, R.E. (2003). Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457469.
Ellis, D.I. & Goodacre, R. (2012). Metabolomics-assisted synthetic biology. Curr. Opin. Biotechnol. 23, 2228.
Ethridge, E.C. & Kaulker, W.F. (2012). Microwave extraction of volatiles for Mars science and ISRU. In Concepts and Approaches for Mars Exploration, LPI Contribution No. 1679, Houston, TX, id. 4328.
Ewing, D. (1995). The directed evolution of radiation resistance in E. coli . Biochem. Biophys. Res. Commun. 2, 549553.
Fajardo-Cavazos, P., Waters, S.M., Schuerger, A.C., George, S., Marois, J.J. & Nicholson, W.L. (2012). Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. Astrobiology 12, 258270.
Ferrer, M., Chernikova, T.N., Yakimov, M.M., Golyshin, P.N. & Timmis, K.N. (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21, 12661267.
Filali, R., Lasseur, C. & Dubertret, G. (1997). MELiSSA: nitrogen sources for growth of the cyanobacterium Spirulina. In Proc. Sixth European Symp. on Space Environmental Control Systems, Noordwijk, The Netherlands, pp. 909912.
Finney, L.A. & O'Halloran, T.V. (2003). Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931936.
Friedmann, E.I. & Ocampo, R. (1976). Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Science 193, 12471249.
Gao, G., Tian, B., Liu, L., Sheng, D., Shen, B. & Hua, Y. (2003). Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli . DNA Repair 2, 14191427.
Giacomelli, G. et al. (2012). Bio-regenerative life support system development for Lunar/Mars habitats. In 42nd Int. Conf. on Environmental Systems, San Diego, CA.
Gitelson, I., Lisovsky, G. & MacElroy, R. (2003). Manmade Closed Ecological Systems. Taylor & Francis, London and New York.
Gitelson, J. (1992). Biological life-support systems for Mars mission. Adv. Space Res. 12, 167192.
Godia, F., Albiol, J., Montesinos, J. & Pérez, J. (2002). MELISSA: a loop of interconnected bioreactors to develop life support in space. J. Biotechnol. 99, 319330.
Godlewski, M. & Adamczyk, B. (2007). The ability of plants to secrete proteases by roots. Plant Physiol. Biochem. 45, 657664.
Godward, M.B.E. (1962). Invisible radiations. In Physiology and Biochemistry of Algae, ed. Lewin, R.A., pp. 551566. Academic Press, New York.
Goldman, R.P. & Travisano, M. (2011). Experimental evolution of ultraviolet radiation resistance in Escherichia coli . Evolution 65, 34863498.
Gómez-Elvira, J. et al. (2014). Curiosity's Rover Environmental Monitoring Station: overview of the first 100 sols. J. Geophys. Res.: Planets 119, 16801688.
Grace, J.M., Verseux, C., Gentry, D., Moffet, A., Thayabaran, R., Wong, N. & Rothschild, L. (2013). Elucidating microbial adaptation dynamics via autonomous exposure and sampling. In AGU Fall Meeting Abstracts, San Francisco, CA, p. 597.
Graham, J.M. (2004). The biological terraforming of Mars: planetary ecosynthesis as ecological succession on a global scale. Astrobiology 4, 168195.
Griese, M., Lange, C. & Soppa, J. (2011). Ploidy in cyanobacteria. FEMS Microbiol. Lett. 323, 124131.
Grotzinger, J.P. et al. (2014). A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777.
Grover, M.R. & Bruckner, A.P. (1998). Water vapor extraction from the Martian atmosphere by adsorption in molecular sieves. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Cleveland, OH, AAIA 98–3302.
Guerrero, F., Carbonell, V., Cossu, M., Correddu, D. & Jones, P.R. (2012). Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS ONE 7, e50470.
Gusev, M.V., Baulina, O.I., Gorelova, O.A., Lobakova, E.S. & Korzhenevskaya, T.G. (2002). Artificial cyanobacterium-plant symbioses. In Cyanobacteria in Symbiosis, ed. Rai, A.N., Bergman, B. & Rasmussen, U., pp. 253312. Springer, The Netherlands.
Harris, D.R. et al. (2009). Directed evolution of ionizing radiation resistance in Escherichia coli . J. Bacteriol. 191, 52405252.
Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D. & Cockell, C.S. (2013). The limits for life under multiple extremes. Trends Microbiol. 21, 204212.
Hassler, D.M. et al. (2013). Mars’ surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science 343, 1244797.
Heap, J.T., Ehsaan, M., Cooksley, C.M., Ng, Y.K., Cartman, S.T., Winzer, K. & Minton, N.P. (2012). Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res. 40, e59.
Hecht, M.H. et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 6467.
Hendrickx, L. & Mergeay, M. (2007). From the deep sea to the stars: human life support through minimal communities. Curr. Opin. Microbiol. 10, 231237.
Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F., Morin, N., Wilmotte, A., Janssen, P. & Mergeay, M. (2006). Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157, 7786.
Henrikson, R. (2009). Earth Food Spirulina, Revised ed. Ronore Enterprises, Inc., Hana, Maui, HI.
Herranz, R. et al. (2013). Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 117.
Herrera, A., Cockell, C.S., Self, S., Blaxter, M., Reitner, J., Thorsteinsson, T., Arp, G., Dröse, W. & Tindle, A.G. (2009). A cryptoendolithic community in volcanic glass. Astrobiology 9, 369381.
Herrero, M., De Lorenzo, V. & Timmis, K.N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172, 65576567.
Hertzberg, S. & Jensen, A. (1989). Studies of alginate immobilized marine microalgae. Bot. Marina 32, 267274.
Hoffman, S.J. & Kaplan, D.I. (1997). Human Exploration of Mars: the Reference Mission of the NASA Mars Exploration Study Team (NASA Special Publication 6107). NASA Johnson Space Center, Houston, TX.
Hollibaugh, J.T. & Azam, F. (1983). Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28, 11041116.
Horneck, G. (2008). The microbial case for Mars and its implication for human expeditions to Mars. Acta Astronaut. 63, 10151024.
Horneck, G. et al. (2003). HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions. Adv. Space Res. 31, 23892401.
Horneck, G. et al. (2006). HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part II: missions to Mars. Adv. Space Res. 38, 752759.
Horneck, G., Klaus, D.M. & Mancinelli, R.L. (2010). Space microbiology. Microbiol. Mol. Biol. Rev. 74, 121156.
Hoshino, K., Hamochi, M., Mitsuhashi, S. & Tanishita, K. (1991). Measurements of oxygen production rate in flowing. Appl. Microbiol. Biotechnol. 35, 8993.
Howitt, S.M. & Udvardi, M.K. (2000). Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta – Biomembranes 1465, 152170.
Jack, D.A., Nakamura, T., Sadler, P. & Cuello, J.L. (2002). Evaluation of two fiber optic-based solar collection and distribution systems for advanced space life support. Trans. ASAE 45, 15471558.
Jiménez, C., Cossío, B.R. & Niella, F.X. (2003). Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221, 331345.
Jones, P.R. (2014). Genetic instability in cyanobacteria – an elephant in the room? Front. Bioeng. Biotechnol. 2, Art. 12.
Kanervo, E., Lehto, K., Ståhle, K., Lehto, H. & Mäenpää, P. (2005). Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels. Int. J. Astrobiol. 4, 97.
Kanesaki, Y., Shiwa, Y., Tajima, N., Suzuki, M., Watanabe, S., Sato, N., Ikeuchi, M. & Yoshikawa, H. (2012). Identification of substrain-specific mutations by massively parallel whole-genome resequencing of synechocystis sp. PCC 6803. DNA Res. 19, 6779.
Kim, M., Zhang, Z., Okano, H., Yan, D., Groisman, A. & Hwa, T. (2012). Need-based activation of ammonium uptake in Escherichia coli . Mol. Syst. Biol. 8, 616.
Kirensky, L.V, Terskov, I.A., Gitelson, I.I., Lisovsky, G.M., Kovrov, B.G. & Okladnikov, Y.N. (1968). Experimental biological life support system. II. Gas exchange between man and microalgae culture in a 30-day experiment. Life Sci. Space Res. 6, 3740.
Klingler, J.M., Mancinelli, R.L. & White, M.R. (1989). Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen. Adv. Space Res. 9, 173176.
Koksharova, O. & Wolk, C. (2002). Genetic tools for cyanobacteria. Appl. Microbiol. Biotechnol. 58, 123137.
Kozyrovska, N. et al. (2006). Growing pioneer plants for a lunar base. Adv. Space Res. 37, 9399.
Kral, T., Altheide, T.S., Lueders, A.E. & Schuerger, A.C. (2011). Low pressure and desiccation effects on methanogens: implications for life on Mars. Planet. Space Sci. 59, 264270.
Kraus, M.P. (1969). Resistance of blue-green algae to 60Co gamma radiation. Radiat. Bot. 9, 481489.
Kudenko, Y. A., Gribovskaya, I.V. & Zolotukhin, I.G. (2000). Physical-chemical treatment of wastes: a way to close turnover of elements in LSS. Acta Astronaut. 46, 585589.
Kumar, H.D. (1964). Effects of radiations on blue-green algae II: effects on growth. Annal. Bot. 28, 555564.
Kurahashi-Nakamura, T. & Tajika, E. (2006). Atmospheric collapse and transport of carbon dioxide into the subsurface on early Mars. Geophys. Res. Lett. 33, L18205.
Langevin, Y., Poulet, F., Bibring, J.-P. & Gondet, B. (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307, 15841586.
Langhoff, S., Cumbers, J., Rothschild, L.J., Paavola, C. & Worden, S.P. (2011). What are the Potential Roles for Synthetic Biology in NASA's Mission? (NASA/CP-2011-216430). NASA Ames Research Center, Moffett Field, CA.
Latshaw, W.L. & Miller, E.C. (1934). Elemental composition of the corn plant. J. Agric. Res. 27, 845861.
Lee, S.Y. (2012). Metabolic engineering and synthetic biology in strain development. ACS Synth. Biol. 1, 491492.
Lehto, K., Kanervo, E., Stahle, K. & Lehto, H. (2007). Photosynthetic life support systems in the Martian conditions. In ROME: Response of Organisms to the Martian Environment (ESA AP-1299) , ed. Cockell, C. & Horneck, G., pp. 151160. ESA Communications, Noordwijk, The Netherlands.
Lehto, K.M., Lehto, H.J. & Kanervo, E.A. (2006). Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res. Microbiol. 157, 6976.
Le Postollec, A. et al. (2009). Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to Mars. Astrobiology 9, 311323.
Lipson, D. & Näsholm, T. (2001). The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128, 305316.
Liu, J., Bukatin, V.E. & Tsygankov, A.A. (2006). Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. Int. J. Hydrog. Energy 31, 15911596.
Liu, Y., Cockell, C.S., Wang, G., Hu, C., Chen, L. & De Philippis, R. (2008). Control of Lunar and Martian dust – experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8, 7586.
Lobascio, C., Lamantea, M., Cotronei, V., Negri, B., De Pascale, S., Maggio, A., Foti, M. & Palumberi, S. (2007). Plant bioregenerative life supports: The Italian CAB Project. J. Plant Interact. 2, 125134.
Lukavský, J. (1988). Long-term preservation of algal strains by immobilization. Archiv für Protistenkunde 135, 6568.
Madigan, M.T., Martinko, J.M. & Parker, J. (2000). Brock Biology of Microorganisms, 9th edn. Prentice Hall, Upper Saddle River, NJ.
Maggi, F. & Pallud, C. (2010). Space agriculture in micro- and hypo-gravity: a comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station. Planet. Space Sci. 58, 19962007.
Mancinelli, R.L. & Banin, A. (2003). Where is the nitrogen on Mars? Int. J. Astrobiol. 2, 217225.
Mancinelli, R.L. & Klovstad, M. (2000). Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planet. Space Sci. 48, 10931097.
Marlière, P., Patrouix, J., Döring, V., Herdewijn, P., Tricot, S., Cruveiller, S., Bouzon, M. & Mutzel, R. (2011). Chemical evolution of a bacterium's genome. Angew. Chem. 50, 71097114.
Martín-Torres, F.J. et al. (2015). Transient liquid water and water activity at Gale Crater on Mars. Nat. Geosci. 8, 357361.
Massa, G.D., Emmerich, J.C., Morrow, R.C., Bourget, C.M. & Mitchell, C.A. (2007). Plant-growth lighting for space life support: a review. Gravit. Space Biol. 19, 1930.
Matsuoka, M., Takahama, K. & Ogawa, T. (2001). Gene replacement in cyanobacteria mediated by a dominant streptomycin-sensitive rps12 gene that allows selection of mutants free from drug resistance markers. Microbiology 147, 20772087.
McEwen, A.S., Ojha, L., Dundas, C.M., Mattson, S.S., Byrne, S., Wray, J.J., Cull, S.C., Murchie, S.L., Thomas, N. & Gulick, V.C. (2011). Seasonal flows on warm Martian slopes. Science 333, 740743.
McFall, E. & Newman, E.B. (1996). Amino acids as carbon sources. In Escherichia coli and Salmonella: Cellular and Molecular Biology, ed. Neidhardt, F.C., Curtiss, R. III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M. & Umbarger, H.E., pp. 358379. ASM Press, Washington, DC.
McKay, C.P. & Marinova, M. (2001). The physics, biology, and environmental ethics of making Mars habitable. Astrobiology 1, 89110.
McKay, C.P., Meyer, T.R., Boston, P.J., Nelson, M. & McCallum, T. (1993). Utilizing Martian resources for life support. In Resources of Near Earth Space, ed. Lewis, J.S., Matthews, M.S. & Guerrieri, M.L., pp. 819843. The Arizona Board of Regents, Tucson, AZ.
McKay, D.S. & Allen, C.C. (1996). Concrete – a practical construction material for Mars. In Proc. of the Fifth International Conf. on Engineering, Construction, and Operations in Space, Albuquerque, NM, pp. 566570.
McLennan, S.M. et al. (2014). Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343, 1244734.
McMahon, S., Parnell, J., Ponicka, J., Hole, M. & Boyce, A. (2013). The habitability of vesicles in Martian basalt. Astron. Geophys. 54, 1721.
McSween, H.Y. (1994). What we have learned about Mars from SNC meteorites. Meteoritics 29, 757779.
McSween, H.Y., Taylor, G.J. & Wyatt, M.B. (2009). Elemental composition of the Martian crust. Science 324, 7367373679.
Menezes, A.A., Cumbers, J., Hogan, J.A. & Arkin, A.P. (2014). Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715.
Meyer, T.R. & McKay, C.P. (1984). The atmosphere of Mars-resources for the exploration and settlement of Mars. In The Case for Mars, ed. Boston, P.J., pp. 209232. Univelt, San Diego, CA.
Meyer, T.R. & McKay, C.P. (1989). The resources of Mars for human settlement. J. Br. Interplanet. Soc. 42, 147160.
Meyer, T.R. & McKay, C.P. (1996). Using the resources of Mars for human settlement. In Strategies for Mars: A Guide to Human Exploration, ed. Stoker, C.R. & Emmart, C., pp. 393442. Univelt, San Diego, CA.
Miao, X., Wu, Q., Wu, G. & Zhao, N. (2003). Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 218, 7177.
Ming, D.W. et al. (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343, 124526.
Möllers, K.B., Cannella, D., Jørgensen, H. & Frigaard, N.-U. (2014). Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 7, 64.
Montague, M., McArthur, G.H., Cockell, C.S., Held, J., Marshall, W., Sherman, L.A., Wang, N., Nicholson, W.L., Tarjan, D.R. & Cumbers, J. (2012). The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12, 11351142.
Mori, K., Ohya, H., Matsumoto, K. & Furune, H. (1987). Sunlight supply and gas exchange systems in the microalgal bioreactor. Adv. Space Res. 7, 4752.
Morris, R.V. et al. (2004). Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover. Science 305, 833836.
Mueller, R.P. & Van Susante, P.J. (2011). A review of Lunar regolith excavation robotic device prototypes. In American Institute of Aeronautics and Astronautics Space 2011 Conf., Long Beach, CA, Paper # 1073752.
Muhlestein, D.J., Hooten, T.M., Koenig, R., Grossl, P. & Bugbee, B. (1999). Is nitrate necessary to biological life support? In The Int. Conf. on Environmental Systems (ICES) Meeting, Denver, CO, pp. 25.
Murphy, R.C., Gasparich, G.E., Bryant, D.A. & Porter, R.D. (1990). Nucleotide sequence and further characterization of the Synechococcus sp. strain PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the Escherichia coli recA gene. J. Bacteriol. 172, 967976.
Murukesan, G., Leino, H., Mäenpää, P., Stahle, K., Raksajit, W., Lehto, H., Allahverdiyeva-Rinne, Y. & Lehto, K. (2015). Pressurized Martian-like pure CO2 atmosphere supports strong growth of cyanobacteria, and causes significant changes in their metabolism. Orig. Life Evol. Biosph., in press.
Mustard, J.F. et al. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305309.
Nakamura, T., Van Pelt, A.D., Yorio, N.C., Drysdale, A.E., Wheeler, R.M. & Sager, J.C. (2009). Transmission and distribution of Photosynthetically Active Radiation (PAR) from solar and electric light sources. Habitation 12, 103117.
Näsholm, T., Kielland, K. & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New Phytol. 182, 3148.
Navarrete, J.U., Cappelle, I.J., Schnittker, K. & Borrok, D.M. (2012). Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria. Int. J. Astrobiol. 12, 123134.
Nelson, M., Dempster, W.F. & Allen, J.P. (2008). Integration of lessons from recent research for “Earth to Mars” life support systems. Adv. Space Res. 41, 675683.
Nelson, M., Pechurkin, N.S., Allen, J.P., Somova, L.A. & Gitelson, J.I. (2010). Closed ecological systems, space life support and biospherics. In Handbook of Environmental Engineering, Volume 10: Environmental Biotechnology, ed. Wang, L.K., Ivanov, V., Tay, J.-H. & Hung, Y.-T., pp. 517565. Humana Press, New York.
Nicholson, W.L., Fajardo-Cavazos, P., Fedenko, J., Ortíz-Lugo, J.L., Rivas-Castillo, A., Waters, S.M. & Schuerger, A.C. (2010). Exploring the low-pressure growth limit: evolution of Bacillus subtilis in the laboratory to enhanced growth at 5 kilopascals. Appl. Environ. Microbiol. 76, 75597565.
Nicholson, W.L., Krivushin, K., Gilichinsky, D. & Schuerger, A.C. (2013). Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc. Natl. Acad. Sci. U.S.A. 110, 666671.
Nickerson, C.A., Mark Ott, C., Mister, S.J., Morrow, B.J., Burns-Keliher, L. & Pierson, D.L. (2000). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 31473152.
Niederholtmeyer, H., Wolfstädter, B.T., Savage, D.F., Silver, P.A. & Way, J.C. (2010). Engineering cyanobacteria to synthesize and export hydrophilic products. Appl. Environ. Microbiol. 76, 34623466.
Nixon, S.L., Cousins, C.R. & Cockell, C.S. (2013). Plausible microbial metabolisms on Mars. Astron. Geophys. 54, 1316.
Olsson-Francis, K. & Cockell, C.S. (2010). Use of cyanobacteria for in-situ resource use in space applications. Planet. Space Sci. 58, 12791285.
Olsson-Francis, K., de la Torre, R., Towner, M.C. & Cockell, C.S. (2009). Survival of akinetes (resting-state cells of cyanobacteria) in low Earth orbit and simulated extraterrestrial conditions. Orig. Life Evol. Biosph. 39, 565579.
Olsson-Francis, K., de la Torre, R. & Cockell, C.S. (2010). Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl. Environ. Microbiol. 76, 21152121.
Olsson-Francis, K., Simpson, A.E., Wolff-Boenisch, D. & Cockell, C.S. (2012). The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology 10, 434444.
Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W.P.C., Ryan, C.M. & del Cardayré, S. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20, 707712.
Paul, J.H., Jeffrey, W.H., David, A.W., Deflaun, M.F. & Cazares, L.H. (1989). Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl. Environ. Microbiol. 55, 18231828.
Paungfoo-Lonhienne, C., Lonhienne, T.G.A., Rentsch, D., Robinson, N., Christie, M., Webb, R.I., Gamage, H.K., Carroll, B.J., Schenk, P.M. & Schmidt, S. (2008). Plants can use protein as a nitrogen source without assistance from other organisms. Proc. Natl. Acad. Sci. U.S.A. 105, 45244529.
Pavlov, A.A., Vasilyev, G., Ostryakov, V.M., Pavlov, A.K. & Mahaffy, P. (2012). Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays. Geophys. Res. Lett. 39, L13202.
Perchonok, M.H., Cooper, M.R. & Catauro, P.M. (2012). Mission to Mars: Food Production and Processing for the Final Frontier, NASA Spec. ed, Annual Review of Food Science and Technology. NASA, Lyndon B. Johnson Space Center, Lyndon B. Johnson Space Center, Houston, TX.
Peters, G.A. & Meeks, J.C. (1989). The Azolla–Anabaena symbiosis: basic biology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 193210.
Pollard, E.C. (1965). Theoretical studies on living systems in the absence of mechanical stress. J. Theor. Biol. 8, 113123.
Pollard, E.C. (1967). Physical determinants of receptor mechanisms. In Gravity and the Organism, ed. Gordon, S.A. & Cohen, M.J., pp. 2534. The University of Chicago Press, Chicago, IL.
Poughon, L., Farges, B., Dussap, C.G., Godia, F. & Lasseur, C. (2009). Simulation of the MELiSSA closed loop system as a tool to define its integration strategy. Adv. Space Res. 44, 13921403.
Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635648.
Qiang, H., Zarmi, Y. & Richmond, A. (1998). Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. 33, 165171.
Qin, L., Qingni, Y., Weidang, A., Yongkang, T., Jin, R. & Shuangsheng, G. (2014). Response of cyanobacteria to low atmospheric pressure. Life Sci. Space Res. 3, 5562.
Quintana, N., Van der Kooy, F., Van de Rhee, M.D., Voshol, G.P. & Verpoorte, R. (2011). Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91, 471490.
Rapp, D. (2007). Human Missions to Mars: Enabling Technologies for Exploring the Red Planet. Springer, Heidelberg, New York, Dordrecht and London, and Praxis Publishing Ltd, Chichester, UK.
Rapp, D. (2013). Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Springer, Heidelberg, New York, Dordrecht and London, and Praxis Publishing Ltd, Chichester, UK.
Raven, J.A., Wollenweber, B. & Handley, L.L. (1992). A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol. 121, 1932.
Rentsch, D., Schmidt, S. & Tegeder, M. (2007). Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 581, 22812289.
Rieder, R. (1997). The chemical composition of Martian soil and rocks returned by the Mobile Alpha Proton X-ray Spectrometer: preliminary results from the X-ray mode. Science 278, 17711774.
Roach, L.H. et al. (2007). CRISM spectral signatures of the north polar gypsum dunes. In Lunar and Planetary Science XXXVIII, LPI Contribution No. 1338, League City, TX, id. 1970.
Rothschild, L.J. (2010). A powerful toolkit for synthetic biology: over 3.8 billion years of evolution. Bioessays 32, 304313.
Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature 409, 10921101.
Salisbury, F., Gitelson, J. & Lisovsky, G. (1997). Bios-3: Siberian experiments in bioregenerative life support. Bioscience 47, 575585.
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P. & Onofri, S. (2012). LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Orig. Life Evol. Biosph. 42, 253262.
Schirmack, J., Böhm, M., Brauer, C., Löhmannsröben, H.-G., de Vera, J.-P., Möhlmann, D. & Wagner, D. (2014). Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions. Planet. Space Sci. 98, 198204.
Schneegurt, M.A. & Sherman, L.A. (1996). A role for the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in nitrogen cycling for CELSS applications. Life Support Biosph. Sci. 3, 4752.
Schneegurt, M.A., Arieli, B., McKeehen, J.D., Stephens, S.D., Nielsen, S.S., Saha, P.R., Trumbo, P.R. & Sherman, L.A. (1995). Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142. Aquaculture 134, 339349.
Schneegurt, M.A., Arieli, B., Nielsen, S.S., Trumbo, P.R. & Sherman, L.A. (1996). Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS. Adv. Space Res. 18, 177180.
Schneider, M.A. & Bruckner, A.P. (2003). Extraction of water from the Martian atmosphere. In Space Technology and Applications International Forum – STAIF 2003, ed. El-Gen, M.S., pp. 11241132. American Institute of Physics, Melville, NY.
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165, 253276.
Schuerger, A.C., Ulrich, R., Berry, B.J. & Nicholson, W.L. (2013). Growth of Serratia liquefaciens under 7 mbar, 0°C, and CO2-enriched anoxic atmospheres. Astrobiology 13, 115131.
Sezonov, G., Joseleau-Petit, D. & D'ari, R. (2007). Escherichia coli physiology in Luria–Bertani broth. J. Bacteriol. 189, 87468749.
Shields, L.M., Durrell, L.W. & Sparrow, A.H. (1961). Preliminary observations on radio-sensitivity of algae and fungi from soils of the Nevada test site. Ecology 42, 440441.
Shiloach, J. & Fass, R. (2005). Growing E. coli to high cell density – a historical perspective on method development. Biotechnol. Adv. 23, 345357.
Silverstone, S.E. & Nelson, M. (1996). Food production and nutrition in Biosphere 2: results from the first mission September 1991 to September 1993. Adv. Space Res. 18, 4961.
Silverstone, S., Nelson, M., Alling, A. & Allen, J. (2003). Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base. Adv. Space Res. 31, 6975.
Silverstone, S., Nelson, M., Alling, A. & Allen, J.P. (2005). Soil and crop management experiments in the Laboratory Biosphere: an analogue system for the Mars on Earth® facility. Adv. Space Res. 35, 15441551.
Singh, S. (2014). A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J. Appl. Microbiol. 117, 12211244.
Singh, H., Anurag, K. & Apte, S.K. (2013). High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. Strain PCC 7120 emanates from genome/proteome repair capabilities. Photosynth. Res. 118, 7181.
Singh, H., Fernandes, T. & Apte, S.K. (2010). Unusual radioresistance of nitrogen-fixing cultures of Anabaena strains. J. Biosci., 35, 427434.
Slade, D. & Radman, M. (2011). Oxidative stress resistance in Deinococcus radiodurans . Microbiol. Mol. Biol. Rev. 75, 133191.
Spiller, H. & Gunasekaran, M. (1990). Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat. Appl. Environ. Microbiol. 33, 447480.
Spiller, H., Latorre, C., Hassan, M.E. & Shanmugam, K.T. (1986). Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis . J. Bacteriol. 165, 412419.
Squyres, S.W. et al. (2012). Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336, 570576.
Stanford-Brown 2011 iGEM Team (2011). PowerCell (Introduction). (accessed 8 June 2014).
Stevenson, B. & Waterbury, J. (2006). Isolation and identification of an epibiotic bacterium associated with heterocystous Anabaena cells. Biol. Bull. 210, 7377.
Stoker, C.R., Gooding, J.L., Roush, T., Banin, A., Burt, D., Clark, B.C., Flynn, G. & Gwynne, O. (1993). The physical and chemical properties and resource potentials of Martian surface soils. In Resources of Near Earth Space, ed. Lewis, J.S., Matthews, M.S. & Guerrieri, M.L., pp. 659707. The Arizona Board of Regents, Tucson, AZ.
Subramanian, G. & Shanmugasundaram, S. (1986). Uninduced ammonia release by the nitrogen-fixing cyanobacterium Anabaena. FEMS Microbiol. Lett. 37, 151154.
Sychev, V.N., Shepelev, E.Y., Meleshko, G.I., Gurieva, T.S., Levinskikh, M.A., Podolsky, I.G., Dadasheva, O.A. & Popov, V.V. (2001). Main characteristics of biological components of developing life support system observed during the experiments aboard orbital complex MIR. Adv. Space Res. 27, 15291534.
Sychev, V.N., Levinskikh, M.A. & Shepelev, Y.Y. (2003). The biological component of the life support system for a Martian expedition. Adv. Space Res. 31, 16931698.
Takahama, K., Matsuoka, M., Nagahama, K. & Ogawa, T. (2003). Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J. Biosci. Bioeng. 95, 302305.
Takahama, K., Matsuoka, M., Nagahama, K. & Ogawa, T. (2004). High-frequency gene replacement in cyanobacteria using a heterologous rps12 gene. Plant Cell Physiol. 45, 333339.
Taylor, S.R. & McLennan, S.M. (2009). Planetary Crusts: Their Composition, Origin and Evolution, Moon. Cambridge University Press, Cambridge.
Thomas, D., Sullivan, S., Sprice, A. & Zimmerman, S. (2005). Common freshwater cyanobacteria grow in 100% CO2 . Astrobiology 5, 6674.
Thomas, D.J., Boling, J., Boston, P.J., Campbell, K.A., McSpadden, T., McWilliams, L. & Todd, P. (2006). Extremophiles for ecopoiesis: desirable traits for and survivability of pioneer Martian organisms. Gravit. Space Biol. 19, 91104.
Trautmann, D., Voß, B., Wilde, A., Al-Babili, S. & Hess, W.R. (2012). Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res. 19, 435448.
Tikhomirov, A.A., Ushakova, S.A., Kovaleva, N.P., Lamaze, B., Lobo, M. & Lasseur, C. (2007). Biological life support systems for a Mars mission planetary base: problems and prospects. Adv. Space Res. 40, 17411745.
Tokano, T. (ed.) (2005). Water on Mars and Life. Springer, Berlin.
Tokusoglu, Ö. & Unal, M.K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris and Isochrysis galbana . J. Food Sci. 68, 11441148.
Toprak, E., Veres, A., Yildiz, S. & Pedraza, J. (2013). Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8, 555567.
Vaniman, D.T. et al. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343, 1243480.
Verseux, C., Paulino-Lima, I.G., Baqué, M., Rothschild, L.J. & Billi, D. (2016). Synthetic biology for space exploration: promises and societal implications. In Ambivalences of Creating Life. Societal and Philosophical dimensions of Synthetic Biology, ed. Hagen, K., Engelhard, M. & Toepfer, G., Springer-Verlag, Berlin and Heidelberg.
Wainwright, M., Wickramasinghe, N.C., Narlikar, J.V. & Rajaratnam, P. (2003). Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol. Lett. 218, 161165.
Wamelink, G.W.W., Frissel, J.Y., Krijnen, W.H.J., Verwoert, M.R. & Goedhart, P.W. (2014). Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. PLoS ONE 9, e103138.
Wang, B., Wang, J., Zhang, W. & Meldrum, D.R. (2012). Application of synthetic biology in cyanobacteria and algae. Front. Microbiol. 3, 344.
Wang, G., Li, G., Li, D., Liu, Y., Song, L., Tong, G., Liu, X. & Cheng, E. (2004). Real-time studies on microalgae under microgravity. Acta Astronaut. 55, 131137.
Wang, G., Chen, H., Li, G., Chen, L., Li, D., Hu, C., Chen, K. & Liu, Y. (2006). Population growth and physiological characteristics of microalgae in a miniaturized bioreactor during space flight. Acta Astronaut. 58, 264269.
Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R. & Church, G.M. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894898.
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gómez-Silva, B., Amundson, R., Friedmann, E.I. & McKay, C.P. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389398.
Wassmann, M., Moeller, R., Reitz, G. & Rettberg, P. (2010). Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. Astrobiology 10, 605615.
Way, J.C., Silver, P.A. & Howard, R.J. (2011). Sun-driven microbial synthesis of chemicals in space. Int. J. Astrobiol. 10, 359364.
Wheeler, R.M. (2004). Horticuture for Mars. In ISHS Acta Horticulturae 642, ed. Looney, N.E., pp. 201–15. ISHS, Toronto, Canada.
Wiens, J., Bommarito, F., Blumenstein, E., Ellsworth, M., Cisar, T., McKinney, B. & Knecht, B. (2001). Water extraction from Martian soil. In Fourth Annual HEDS-UP Forum, LPI Contribution No. 1106, Houston, TX.
Wierzchos, J., Ascaso, C. & McKay, C.P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415422.
Wijffels, R.H., Kruse, O. & Hellingwerf, K.J. (2013). Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24, 405413.
Williams, J.D., Coons, S.C. & Bruckner, A.P. (1995). Design of a water vapor adsorption reactor for Martian in situ resource utilization. J. Br. Interplanet. Soc. 48, 347354.
Wilson, J.W. et al. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. U.S.A. 104, 1629916304.
Xiao, Y., Liu, Y., Wang, G., Hao, Z. & An, Y. (2010). Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon 56, 17.
Yang, C., Liu, H., Li, M., Yu, C. & Yu, G. (2008). Treating urine by Spirulina platensis . Acta Astronaut. 63, 10491054.
Zaets, I., Burlak, O., Rogutskyy, I., Vasilenko, A., Mytrokhyn, O., Lukashov, D., Foing, B. & Kozyrovska, N. (2011). Bioaugmentation in growing plants for lunar bases. Adv. Space Res. 47, 10711078.
Zhou, Y., Zhang, Y., Wang, X., Cui, J., Xia, X., Shi, K. & Yu, J. (2011). Effects of nitrogen form on growth, CO assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants. J. Zhejiang Univ. B 12, 126134.
Zhukov-Verezhnikov, N.N. et al. (1962). Results of first microbiological and cytological experiments on Earth satellites in space. Artif. Earth Satell. 11, 4771.
Zisk, S.H. & Mouginis-Mark, P.J. (1980). Anomalous region on Mars – implications for near-surface liquid water. Nature 288, 126129.
Zubrin, R. & Wagner, R. (2011). The Case for Mars: The Plan to Settle the Red Planet and Why We Must, 2011 edn. Free Press, New York.
Zubrin, R., Brian, F. & Tomoko, K. (1997). Mars in-situ resource utilization based on the reverse water gas shift – experiments and mission applications. In 33rd Joint Propulsion Conf. and Exhibit, Seattle, WA, AIAA 97–2767.
Zubrin, R.M., Baker, D.A. & Gwynne, O. (1991). Mars Direct: a simple, robust, and cost effective architecture for the space exploration initiative. In 29th Aerospace Sciences Meeting, Reno, NV, AIAA 91–0329.