Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T19:24:00.363Z Has data issue: false hasContentIssue false

A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted

Published online by Cambridge University Press:  22 May 2007

Joop M. Houtkooper
Affiliation:
Center for Psychobiology and Behavioral Medicine, Justus-Liebig-University of Giessen, Otto-Behaghel-Strasse 10F, D-35394 Giessen, Germany e-mail: joophoutkooper@gmail.com
Dirk Schulze-Makuch
Affiliation:
School of Earth and Environmental Sciences, Washington State University, Pullman, WA 99164, USA e-mail: dirksm@wsu.edu

Abstract

The adaptability of extremophiles on Earth raises the question of what strategies putative life might have used to adapt to the present conditions on Mars. Here, we hypothesize that organisms might utilize a water–hydrogen peroxide (H2O–H2O2) mixture rather than water as an intracellular liquid. This adaptation would have the particular advantages in the Martian environment of providing a low freezing point, a source of oxygen and hygroscopicity. The findings by the Viking experiments are reinterpreted in light of this hypothesis. Our conclusion is that the hitherto mysterious oxidant in the Martian soil, which evolves oxygen when humidified, might be H2O2 of biological origin. This interpretation has consequences for site selection for future missions to search for life on Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atreya, S.K. & Gu, Z. (1994). J. Geophys. Res. 99, 13 13313 145.CrossRefGoogle Scholar
Atreya, S.K., Wong, A.-S., Renno, N.O., Farrell, W.M., Delory, G.T., Sentman, D.D., Cummer, S.A., Marshall, J.R., Rafkin, S.C.R. & Catling, D.C. (2006). Astrobiology 6, 429450.CrossRefGoogle Scholar
Benner, S.A., Devine, K.G., Matveeva, L.N. & Powell, D.H. (2000). Proc. Natl Acad. Sci. USA 97, 24252430.Google Scholar
Biemann, K. et al. (1977). J. Geophys. Res. 82, 46414658.CrossRefGoogle Scholar
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Astrobiology 5, 127140.CrossRefGoogle Scholar
Diaz, B. & Schulze-Makuch, D. (2006). Astrobiology 6, 332347.CrossRefGoogle Scholar
De Duve, C. (1969). Ann. N. Y. Acad. Sci. 168, 369381.CrossRefGoogle Scholar
Eisner, T. (2003). For Love of Insects. Harvard University Press, Cambridge, MA.Google Scholar
Encrenaz, Th., Bezard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefevre, F. & Forget, F. (2004). Icarus 170, 424429.CrossRefGoogle Scholar
Eschenbach, D.A., Davick, P.R., Williams, B.L., Klebanoff, S.J., Young-Smith, K., Critchlow, C.M. & Holmes, K.K. (1989). J. Clin. Microbiol. 27, 251256.Google Scholar
Flynn, G.J. (1996). Earth Moon Planets 72, 469474.Google Scholar
Foley, W.T. & Giguère, P.A. (1951). Can. J. Chem. 29, 123132.CrossRefGoogle Scholar
Friedmann, E.I. (1982). Science 215, 10451053.CrossRefGoogle Scholar
Giguère, P.A. & Secco, E.A. (1954). Can. J. Chem. 32, 550556.CrossRefGoogle Scholar
Horowitz, N.H. (1986). To Utopia and Back: The Search for Life in the Solar System. W.H. Freeman & Co., New York.Google Scholar
Horowitz, N.H., Hobby, G.L. & Hubbard, J.S. (1976). Science 194, 13211322.Google Scholar
Horowitz, N.H., Hobby, G.L. & Hubbard, J.S. (1977). J. Geophys. Res. 82, 46594662.CrossRefGoogle Scholar
Kashefi, K. & Lovley, D.R. (2003). Science 301, 934.CrossRefGoogle Scholar
Klein, H.P. (1978). Icarus 34, 666674.Google Scholar
Klein, H.P. (1999). Origins Life Evol. Biosphere 29, 625631.CrossRefGoogle Scholar
Klein, H.P. et al. (1976). Science 194, 99105.CrossRefGoogle Scholar
Levin, G.V. & Straat, P.A. (1976). Science 194, 13221329.Google Scholar
Levin, G.V. & Straat, P.A. (1977). J. Geophys. Res. 82, 46634667.Google Scholar
Levin, G.V. & Straat, P.A. (1981). Icarus 45, 494516.Google Scholar
Mancinelli, R.L. (1989). Adv. Space Res. 9, 191195.CrossRefGoogle Scholar
Mattimore, V. & Battista, J.R. (1996). J. Bacteriol. 178, 633637.CrossRefGoogle Scholar
McDonald, G.D., de Vanssay, E. & Buckley, J.R. (1998). Icarus 132, 170175.Google Scholar
Navarro-González, R. et al. (2006). Proc. Natl Acad. Sci. USA 103, 16 08916 094.CrossRefGoogle Scholar
Oyama, V.I. & Berdahl, B.J. (1977). J. Geophys. Res. 82, 46694676.CrossRefGoogle Scholar
Oyama, V.I., Berdahl, B.J. & Carle, G.C. (1977). Nature 265, 110114.CrossRefGoogle Scholar
Quinn, R.C. & Zent, A.P. (1999). Origins Life Evol. Biosphere 29, 5972.CrossRefGoogle Scholar
Rhee, S.G., Bae, Y.S., Lee, S.R. & Kwon, J. (2000). Signal Transduction Knowledge Environ. pe1, 5353.Google Scholar
Rhee, S.G. (2006). Science 312, 18821883.CrossRefGoogle Scholar
Rothschild, L.J. (2007). Planetary Systems and the Origins of Life, eds Pudritz, R.E., Higgs, P. & Stone, J.Cambridge University Press, Cambridge.Google Scholar
Ryan, C.S. & Kleinberg, I. (1995). Arch. Oral. Biol. 40, 753763.Google Scholar
Schulze-Makuch, D., Grinspoon, D.H., Abbas, O., Irwin, L.N. & Bullock, M. (2004). Astrobiology 4, 1118.CrossRefGoogle Scholar
Schulze-Makuch, D. & Irwin, L.N. (2004). Life in the Universe: Expectations and Constraints. Springer, Berlin.Google Scholar
Sundaresan, M., Yu, Z.X., Ferrans, Y.J., Irani, K. & Finkel, T. (1995). Science 270, 296299.CrossRefGoogle Scholar
Tanenbaum, S.W. (1956). Biochim. Biophys. Acta 21, 335342.CrossRefGoogle Scholar
Yen, A.S., Kim, S.S., Hecht, M.H., Frant, M.S. & Murray, B. (2000). Science 289, 19091912.CrossRefGoogle Scholar
Zent, A.P. & McKay, C.P. (1994). Icarus 108, 146157.CrossRefGoogle Scholar