Skip to main content Accessibility help
×
Home

Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

  • Tianzhi Li (a1), De Chang (a1) (a2), Huiwen Xu (a3), Jiapeng Chen (a4), Longxiang Su (a1), Yinghua Guo (a1), Zhenhong Chen (a1), Yajuan Wang (a1), Li Wang (a1), Junfeng Wang (a1), Xiangqun Fang (a1) and Changting Liu (a1)...

Abstract

Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space environment.

Copyright

Corresponding author

*Corresponding author. E-mail: liuchangt@foxmail.com

References

Hide All
Arunasri, K., Adil, M., Charan, K.V., Suvro, C., Reddy, S.H. & Shivaji, S. (2013). Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS ONE 8.
Audic, S. & Claverie, J.M. (1997). The significance of digital gene expression profiles. Genome Res. 7, 986995.
Bauer, A.W., Kirby, W.M., Sherris, J.C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493496.
Benjamini, Y. & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 11651188.
Bentley, R. & Meganathan, R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev. 46, 241280.
Bouloc, P. & Dari, R. (1991). Escherichia-coli metabolism in space. J. Gen. Microbiol. 137, 28392843.
Brown, R.B., Klaus, D. & Todd, P. (2002). Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E-coli . Microgravit. Sci. Technol. 13, 2429.
Chang, T.T., Walther, I., Li, C.F., Boonyaratanakornkit, J., Galleri, G., Meloni, M.A., Pippia, P., Cogoli, A. & Hughes-Fulford, M. (2012). The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J. Leukoc. Biol. 92, 11331145.
Chopra, V., Fadl, A.A., Sha, J., Chopra, S., Galindo, C.L. & Chopra, A.K. (2006). Alterations in the virulence potential of enteric pathogens and bacterial–host cell interactions under simulated microgravity conditions. J. Toxicol. Environ. Health A 69, 13451370.
Cogoli, A., Tschopp, A. & Fuchs-Bislin, P. (1984). Cell sensitivity to gravity. Science 225, 228230.
Crabbe, A., Pycke, B., Van Houdt, R., Monsieurs, P., Nickerson, C., Leys, N. & Cornelis, P. (2010). Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ. Microbiol. 12, 15451564.
Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M. & Finlay, B.B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli . Clin. Microbiol. Reviews 26, 822880.
Duray, P.H., Hatfill, S.J. & Pellis, N.R. (1997). Tissue culture in microgravity. Sci. Med. 4, 4655.
Foster, J.S., Khodadad, C.L., Ahrendt, S.R. & Parrish, M.L. (2013). Impact of simulated microgravity on the normal developmental time line of an animal–bacteria symbiosis. Sci. Rep. 3, 1340.
Gao, H., Liu, Z. & Zhang, L. (2011). Secondary metabolism in simulated microgravity and space flight. Protein Cell 2, 858861.
Horneck, G., Bucker, H., Dose, K., Martens, K.D., Bieger, A., Mennigmann, H.D., Reitz, G., Requardt, H. & Weber, P. (1984a). Microorganisms and biomolecules in space environment experiment ES 029 on Spacelab-1. Adv. Space Res. 4, 1927.
Horneck, G., Klaus, D.M. & Mancinelli, R.L. (2010). Space microbiology. Microbiol. Mol. Biol. Rev. 74, 121156.
Horneck, G. et al. (2012). Resistance of bacterial endospores to outer space for planetary protection purposes–experiment PROTECT of the EXPOSE-E mission. Astrobiology 12, 445456.
Hudault, S., Guignot, J. & Servin, A.L. (2001). Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49, 4755.
Juergensmeyer, M.A., Juergensmeyer, E.A. & Guikema, J.A. (1999). Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravit. Sci. Technol. 12, 4147.
Kacena, M.A., Manfredi, B. & Todd, P. (1999a). Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravit. Sci. Technol. 12, 7477.
Kacena, M.A., Merrell, G.A., Manfredi, B., Smith, E.E., Klaus, D.M. & Todd, P. (1999b). Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis . Appl. Microbiol. Biotechnol. 51, 229234.
Klaus, D., Simske, S., Todd, P. & Stodieck, L. (1997). Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology, UK 143, 449455.
Knight, V., Couch, R.B. & Landahl, H.D. (1970). Effect of lack of gravity on airborne infection during space flight. JAMA 214, 513518.
Lai, Y., Rosenshine, I., Leong, J.M. & Frankel, G. (2013). Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli . Cell. Microbiol. 15, 17961808.
Lynch, S.V. & Matin, A. (2005). Travails of microgravity: man and microbes in space. Biologist 52.
Lynch, S.V., Mukundakrishnan, K., Benoit, M.R., Ayyaswamy, P.S. & Matin, A. (2006). Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl. Environ. Microbiol. 72(12), 77017710.
Mellmann, A. et al. (2011). Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6, e22751.
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621628.
Nagalakshmi, U., Waern, K. & Snyder, M. (2010). RNA-Seq: a method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology, ed. Frederick, M. Ausubel et al. Chapter 4: Unit 4 11 1113. Pubilished by John Wiley & Sons, Inc. SN - 0471142720.
Nicholson, W.L., Moeller, R., Team, P. & Horneck, G. (2012). Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated Martian conditions on the EXPOSE-E experiment PROTECT. Astrobiology 12, 469486.
Nickerson, C.A., Ott, C.M., Mister, S.J., Morrow, B.J., Burns-Keliher, L. & Pierson, D.L. (2000). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 31473152.
Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R. & Pierson, D.L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345361.
Reid, G., Howard, J. & Gan, B.S. (2001). Can bacterial interference prevent infection? Trends Microbiol. 9, 424428.
Rosenzweig, J.A., Abogunde, O., Thomas, K., Lawal, A., Nguyen, Y.U., Sodipe, A. & Jejelowo, O. (2010). Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl. Microbiol. Biotechnol. 85, 885891.
Schuerger, A.C. (2004). Microbial ecology of the surface exploration of Mars with human-operated vehicles. Sci. Technol. 107, 363386.
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165, 253276.
Singleton, P. (1999). Bacteria in Biology, Biotechnology, and Medicine. Wiley, Chichester, New York.
Smibert, R.M. & Krieg, N.R. (1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology (ed. PGRGEMWAWNR Krieg.), pp. 607654. American Society for Microbiology, Washington, DC.
Sonnenfeld, G. (2012). Space flight modifies T cellactivation—role of microgravity. J. Leukoc. Biol. 92, 11251126.
Su, L. et al. (2014). Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight. Adv. Space Res. 53, 1829.
Taylor, G.R. (1974). Space microbiology. Annu. Rev. Microbiol. 28, 121137.
Taylor, P.W. & Sommer, A.P. (2005). Towards rational treatment of bacterial infections during extended space travel. Int. J. Antimicrob. Agents 26, 183187.
Thirsk, R., Kuipers, A., Mukai, C. & Williams, D. (2009). The space-flight environment: the International Space Station and beyond. Can. Med. Assoc. J. 180, 12161220.
Tucker, D.L., Ott, C.M., Huff, S., Fofanov, Y., Pierson, D.L., Willson, R.C. & Fox, G.E. (2007). Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment. BMC Microbiol. 7, 15.
Venkateswaran, K., Satomi, M., Chung, S., Kern, R., Koukol, R., Basic, C. & White, D. (2001). Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24, 311320.
Vukanti, R. & Leff, L.G. (2012). Expression of multiple stress response genes by Escherichia coli under modeled reduced gravity. Microgravit. Sci. Tecnol. 24, 267279.
Vukanti, R., Mintz, E. & Leff, L. (2008). Changes in gene expression of E-coli under conditions of modeled reduced gravity. Microgravit. Sci. Tecnol. 20, 4157.
Vukanti, R., Model, M.A. & Leff, L.G. (2012). Effect of modeled reduced gravity conditions on bacterial morphology and physiology. BMC Microbiol. 12.
Wang, Y. et al. 2014. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight conditions involve large-scale changes in metabolic pathways. Adv. Space Res. 53, 11081117.
Wilson, J.W. et al. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA 104, 1629916304.
Wilson, J.W., Ott, C.M., Ramamurthy, R., Porwollik, S., McClelland, M., Pierson, D.L. & Nickerson, C.A. (2002a). Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl. Environ. Microbiol. 68, 54085416.
Wilson, J.W., Ramamurthy, R., Porwollik, S., McClelland, M., Hammond, T., Allen, P., Ott, C.M., Pierson, D.L. & Nickerson, C.A. (2002b). Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl. Acad. Sci. USA 99, 1380713812.

Keywords

Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

  • Tianzhi Li (a1), De Chang (a1) (a2), Huiwen Xu (a3), Jiapeng Chen (a4), Longxiang Su (a1), Yinghua Guo (a1), Zhenhong Chen (a1), Yajuan Wang (a1), Li Wang (a1), Junfeng Wang (a1), Xiangqun Fang (a1) and Changting Liu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed