Skip to main content Accessibility help

From systems chemistry to systems astrobiology: life in the universe as an emergent phenomenon

  • J. Chela-Flores (a1)


Although astrobiology is a science midway between the life and physical sciences, it has surprisingly remained largely disconnected from recent trends in certain branches of both life and physical sciences. We discuss potential applications to astrobiology of approaches that aim at integrating rather than reducing. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology. The systems approach should also yield insights into astrobiology, especially concerning the ongoing search for alternative abodes for life. This is feasible since new data banks in the case of astrobiology – considered as a branch of biology – are of a geophysical/astronomical kind, rather than the molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry for solving fundamental problems, such as protein or proteome folding. By focusing on how systems properties emerge in astrobiology we consider the question: can life in the universe be interpreted as an emergent phenomenon? In the search for potential habitable worlds in our galactic sector with current space missions, extensive data banks of geophysical parameters of exoplanets are rapidly emerging. We suggest that it is timely to consider life in the universe as an emergent phenomenon that can be approached with methods beyond the science of chemical evolution – the backbone of previous research in questions related to the origin of life. The application of systems biology to incorporate the emergence of life in the universe is illustrated with a diagram for the familiar case of our own planetary system, where three Earth-like planets are within the habitable zone (HZ) of a G2 V (the complete terminology for the Sun in the Morgan–Keenan system) star. We underline the advantage of plotting the age of Earth-like planets against large atmospheric fraction of a biogenic gas, whenever such anomalous atmospheres are discovered in these worlds. A prediction is made as to the nature of the atmospheres of the planets that lie in the stellar HZs.



Hide All
Anderson, P.W. (1972). More is different: broken symmetry and nature of hierarchical structure of science. Science 177, 393396.
Auvergne, M. et al. (2009). The CoRoT satellite in flight: description and performances. Astron. Astrophys. 506, 411424.
Borucki, W.J. et al. (2011) Characteristics of planetary candidates observed by Kepler, II: analysis of the first four months of data. Astrophys. J. 736(1). doi: 10.1088/0004-637X/736/1/19
Borucki, W.J. et al. (2012). Kepler-22b: a 2.4 Earth-radius planet in the habitable zone of a Sun-like star. Astrophys. J. 745, 120136.
Brocks, J.J., Logan, G.A. & Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285, 10331036.
Buchanan, M., Caldarelli, G., de los Rios, P., Rao, F. & Vendruscolo, M. (eds) (2010). Networks in Cell Biology, p. 271. Cambridge University Press, Cambridge.
Chela-Flores, J. (2007). Testing the universality of biology. Int. J. Astrobiol. 6(3), 241248 (© Cambridge University Press).∼chelaf/universality.pdf
Chela-Flores, J. (2008). Fitness of the cosmos for the origin and evolution of life: from biochemical fine-tuning to the anthropic principle. In Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning, ed. Barrow, J.D., Morris, S.C., Freeland, S.J. & Harper, C.L., pp. 151166. Cambridge University Press, Cambridge.∼chelaf/ss154.html
Chela-Flores, J. & Kumar, N. (2008). Returning to Europa: can traces of surficial life be detected? Int. J. Astrobiol., 7(3), 263269. (Copyright holder: Cambridge University Press).
Chela-Flores, J. (2010). Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int. J. Astrobiol. 9, 101108 (© Cambridge University Press).∼chelaf/jcfSeamless.pdf
Chela-Flores, J. (2011a). The Science of Astrobiology: A Personal Point of View on Learning to Read the Book of Life, 2nd edn (Book Series: Cellular Origin, Life in Extreme Habitats and Astrobiology), ch. 10, p. 360. Springer, Dordrecht, The Netherlands.
Chela-Flores, J. (2011b). The Science of Astrobiology a Personal Point of View on Learning to Read the Book of Life, 2nd edn (Book Series: Cellular Origin, Life in Extreme Habitats and Astrobiology), ch. 1, p. 360. Springer, Dordrecht, The Netherlands.∼chelaf/ss220.html
Chela-Flores, J. (2012). A case for landing on the moon's farside to test nitrogen abundances. Int. J. Astrobiol., 11, 6169 (© Cambridge University Press 2011).∼chelaf/ija2011TG.pdf
Chela-Flores, J. & Kumar, N. (2008). Returning to Europa: can traces of surficial life be detected? Int. J. Astrobiol. 7, 263269.∼chelaf/JCFKumar.pdf
Chela-Flores, J. & Raulin, F. (eds.) (1996). Chemical Evolution: Physics of the Origin and Evolution of Life (The Cyril Ponnamperuma Memorial Conference). Kluwer Academic Publishers, Dordrecht, The Netherlands.
Chela-Flores, J., Owen, T. & Raulin, F. (2001). The First Steps of Life in the Universe, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Conway-Morris, S. (1998). The Crucible of Creation, Oxford University Press, Cambridge.
Conway-Morris, S. (2003). Life's Solution Inevitable Humans in a Lonely Universe, Cambridge University Press, Cambridge.
Cosmovici, C.B., Pluchino, S., Salerno, E., Montebugnoli, S., Zoni, L. & Bartolini, M. (2008). Radio search for water in exo-planetary systems. ASPC 398, 3335.
Darling, D. (2001). Life Everywhere: the Maverick Science of Astrobiology, p. 166. Basic Books, New York.
Dawkins, R. (1983). Universal Darwinism. In Evolution from Molecules to Men, ed. Bendall, D.S., pp. 403425. Cambridge University Press, London.
De Duve, C. (1995). Vital Dust: Life as a Cosmic Imperative, Basic Books, New York.
De Duve, C. (2002). Life Evolving Molecules Mind and Meaning, Oxford University Press, New York.
De Duve, C. (2005). Singularities Landmarks on the Pathway of Life, Cambridge University Press, Cambridge.
Dobson, C.M. (2003) Protein folding and misfolding. Nature 426, 884890.
Erwin, D.H. (2003). The Goldilocks hypothesis. Science 302, 16821683.
Fischer, T.P., Hilton, D.R., Zimmer, M.M., Shaw, A.M., Sharp, Z.D. & Walker, J.A. (2002). Subduction and recycling of nitrogen along the Central American margin. Science 297, 11541157.
Fontana, W. & Buss, L.W. (1994). What would be conserved if ‘the tapes were played twice’? Proc. Natl. Acad. Sci. U.S.A. 91, 757761.
Foote, M. (1998). Contingency and convergence. Science 280, 20682069.
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science 306, 17581761.
Friedlung, M. et al. (2010). A roadmap for the detection and characterization of other Earths. Astrobiology 10, 113119 (
Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603647.
Gould, S.J. (1989). Wonderful Life: the Burgess Shale and the Nature of History, W. W. Norton and Company, New York.
Hartl, F.U., Bracher, A. & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature 475, 324332.
Henderson, L.J. (1913). The Fitness of the Environment an Enquiry into the Biological Significance of the Properties of Matter, p. 312. Peter Smith, Gloucester, MA.
Hoppe, P., Strebel, R., Eberhadt, P., Amari, S. & Lewis, R.S. (1997). Type II supernova matter in a silicon carbide grain from the Murchison meteorite. Science 272, 1314–17.
Kasting, J.F. (1982). Stability of ammonia in the primitive terrestrial atmosphere. J. Geophys. Res. 87, 30913098.
Kerr, R.A. (2002). Winking star unveils planetary birthplace. Science 296, 2312–13.
Kiang, N.Y. (2008). The color of plants on other worlds. Sci. Am. 298, 4855.
Kiang, N.Y., Segura, A., Tinetti, G., Govindjee, Blankenship, R.E., Cohen, M., Siefert, J., Crisp, D. & Meadows, V.S. (2007). Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar Worlds. Astrobiology 7, 252274.
Kipping, D. (2009). Transit timing effects due to an exomoon. Mon. Not. R. Astron. Soc. 392, 181.
Knoll, A.H. (1995). Life story. Nature 375, 201202.
Kuhn, W.R. & Atreya, S.K. (1979). Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus 37, 207213.
Kump, L.R. (2008). The rise of atmospheric oxygen. Nature 451, 277278.
Mandell, M., Deming, D., Blake, G., Knutson, H.A., Mumma, M.J., Villanueva, G.L. &. Salyk, C. (2011). Non-detection of L-band line emission from the exoplanet HD189733b. Astrophys. J. 728, 18.
Mather, T.A., Pyle, D.M. & Allen, A.G. (2004). Volcanic source for fixed nitrogen in the early Earth's atmosphere. Geology 32, 905908.
Mayor, M., Udry, S., Lovis, C., Pepe, F., Queloz, D., Benz, W., Bertaux, J.-L., Bouchy, F., Mordasini, C., and Segransan, D. (2009). The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 Super-Earths (4.2, 6.9, and 9.2 M⊕). Astron. Astrophys. 493, 639644.
Miyazaki, A., Hiyagon, H., Sugiura, N., Hirose, K. & Takahashi, E. (2004). Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the Earth. Geochim. Cosmochim. Acta 68, 387401.
Monod, J. (1971). Chance and Necessity: an Essay on the Natural Philosophy of Modern Biology, Alfred A. Knopf, New York.
Pace, N.R. (2001). The universal nature of biochemistry. Proc. Natl. Acad. Sci. U.S.A. 98, 805808.
Pepe, F., Lovis, C., Ségransan, D., Benz, W., Bouchy, F., Dumusque, X., Mayor, M., Queloz, D., Santos, N. C. & Udry, S. (2011). The HARPS search for Earth-like planets in the habitable zone: I – very low-mass planets around HD20794, HD85512 and HD192310. Astron. Astrophys. 534, A58.
Ponnamperuma, C. and Chela-Flores, J. (eds.) (1995). Chemical Evolution: the Structure and Model of the First Cell, Kluwer Academic Publishers, Dordrecht, The Netherlands. [Also: Ponnamperuma, C. & Chela-Flores, J. (Guest eds.) (1994). Journal of Biological Physics 120, Numbers 14].
Rollinson, H.R. (2007). Early Earth Systems: a Geochemical Approach, Ch. 5, pp. 184186.
Sauer, U., Heinemann, M. & Zamboni, N. (2007). Genetics: getting closer to the whole picture. Science 316, 550551.
Seager, S. & Deming, D. (2010). Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 48, 631672.
Schneider, G. et al. (1999). NICMOS imaging of the HR 4796A circumstellar disk. Astrophys. J. 513, L1217–30.
Schneider, J. et al. The SEE-COAST TEAM. (2009). The super earth explorer: a coronagraphic off-axis space telescope. Exp. Astron. 23, 357377.
Schneider, J. et al. (2010). The search for worlds like our own. Astrobiology 10, 517.
Stoker, C.R. et al. (2010). Habitability of the Phoenix landing site. J. Geophys. Res. 115, E00E20 (doi:10.1029/2009JE003421).
Swain, M.R. (2010). Finesse – a new mission concept for exoplanet spectroscopy. Bull. Am. Astron. Soc.. 42, 1064.
Swain, M.R., Vasisht, G. & Tinetti, G. (2008). The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329331.
Szathmary, E. (2002). The gospel of inevitability. Was the universe destined to lead to the evolution of humans? Nature 419, 779780.
Szostak, J.W. (2009). Origins of life: systems chemistry on early Earth. Nature 459, 171172.
Tinetti, G. et al. (2007). Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448, 169171.
Vendruscolo, M., Knowles, T.P.J. & Dobson, C.M. (2011). Protein solubility and protein homeostasis: a generic view of protein misfolding disorders. Cold Spring Harb. Perspect. Biol. 3, a010454.
Wolstencroft, R.D. & Raven, J.A. (2002). Photosynthesis: likelihood of occurrence and possibility of detection on earth-like planets. Icarus 157, 535548.
Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. (1995). Navigating the folding routes. Science 267, 16191620.
Zhang, Y. & Zindler, A. (1993). Distribution and evolution of carbon and nitrogen in the Earth. Earth Planet. Sci. 117, 331345.


From systems chemistry to systems astrobiology: life in the universe as an emergent phenomenon

  • J. Chela-Flores (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed