Skip to main content Accessibility help

Field method for rapid quantification of labile organic carbon in hyper-arid desert soils validated by two thermal methods

  • Lauren E. Fletcher (a1) (a2), Julio E. Valdivia-Silva (a2) (a3), Saul Perez-Montaño (a2) (a4), Renee M. Condori-Apaza (a5), Catharine A. Conley (a6), Rafael Navarro-Gonzalez (a3) and Christopher P. McKay (a2)...


The objective of this work was to develop a field method for the determination of labile organic carbon in hyper-arid desert soils. Industry standard methods rely on expensive analytical equipment that are not possible to take into the field, while scientific challenges require fast turn-around of large numbers of samples in order to characterize the soils throughout this region. Here we present a method utilizing acid-hydrolysis extraction of the labile fraction of organic carbon followed by potassium permanganate oxidation, which provides a quick and inexpensive approach to investigate samples in the field. Strict reagent standardization and calibration steps within this method allowed the determination of very low levels of organic carbon in hyper-arid soils, in particular, with results similar to those determined by the alternative methods of Calcination and Pyrolysis–Gas Chromatography–Mass Spectrometry. Field testing of this protocol increased the understanding of the role of organic materials in hyper-arid environments and allowed real-time, strategic decision making for planning for more detailed laboratory-based analysis.



Hide All
Bell, M.J., Moody, P.W., Yo, S.A. & Connoly, R.D. (1999). Using active fractions of soil organic matter as indicators of the sustainability of Ferrosol farming systems. Australian Journal of Soil Research 37, 8.
Blair, G.J., Lefroy, R.D.B. & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46, 17.
Brady, N.C. & Weil, R.R. (2001). The Nature and Properties of Soils. Prentice Hall, Upper Saddle River, New Jersey.
Burkins, M.B., Virginia, R.A., Chamberlain, C.P. & Wall, D.H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81, 23772391.
Burkins, M.B., Virginia, R.A. & Wall, D.H. (2001). Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology 7, 113125.
Cabria, F.N., Bianchini, M.R. & Mediavilla, M.C. (2005). Óxidos de hierro libres asociados a carbono orgánico en agregados de suelos del partido de Balcarce. Ciencia del Suelos Argentina 23, 2329.
Chan, K.Y., Bowman, A. & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science 166, 6167.
Cheshire, M.V., Mundie, C.M. & Shepherd, H. (1969). Transformation of 14C glucose and starch in soil. Soil Biology and Biochemistry 1, 117130.
Conley, C.A., Ishkhanova, G., Mckay, C.P. & Cullings, K. (2006). A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6, 521526.
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). Bacterial diversity in hyperarid Atacama Desert soils. Journal of Geophysical Research – Biogeosciences 112, G04S17.
Cowan, D., Russell, N., Mamais, A. & Sheppard, D. (2002). Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6, 431436.
Davila, A.F., Gomez-Silva, B., De Los Rios, A., Ascaso, C., Olivares, H., Mckay, C.P. & Wierzchos, J. (2008). Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. Journal of Geophysical Research – Biogeosciences 113, G01028.
Drees, K.P., Neilson, J.W., Betancourt, J.L., Quade, J., Henderson, D.A., Pryor, B.M. & Maier, R.M. (2006). Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Applied and Environmental Microbiology 72, 79027908.
Ewing, S.A., Navarro-Gonzalez, R., Amundson, R., Wu, J. & Mckay, C.P. (2004). A soil carbon cycle without life? The content and residence times of organic carbon in the Atacama Desert of Chile. International Journal of Astrobiology 3, 120.
Ewing, S.A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S.S., Perry, K., Dietrich, W., Mckay, C.P. & Amundson, R. (2006). A threshold in soil formation at Earth's arid-hyperarid transition. Geochimica et Cosmochimica Acta 70, 52935322.
Ewing, S.A., Macalady, J.L., Warren-Rhodes, K., Mckay, C.P. & Amundson, R. (2008). Changes in the soil C cycle at the arid–hyperarid transition in the Atacama Desert. Journal of Geophysical Research – Biogeosciences 113, G02S90.
Fletcher, L.E., Conley, C.A., Valdivia-Silva, J.E., Perez-Montaño, S., Condori-Apaza, R., Kovacs, G.T.A., Glavin, D.P. & Mckay, C.P. (2011). Determination of low bacterial concentrations in hyper-arid Atacama soils: comparison of biochemical and microscopy methods with real-time quantitative-PCR. Canadian Journal of Microbiology 57, 953963.
Fletcher, L.E., Valdivia-Silva, J.E., Perez-Montaño, S., Condori-Apaza, R., Conley, C.A. & Mckay, C.P. (2012). Variability of organic material in surface horizons of the hyper-arid Mars-like soils of the Atacama Desert. Advances in Space Research 49, 271279.
Frigerio, N.A. (1969). Preparation and properties of crystalline permanganic acid. Journal of the American Chemical Society 91, 6200.
Gordon, H.T. (1951). Indirect colorimetric micro-oxidimetry of organic compounds. Analytical Chemistry 23, 4.
Haynes, R.J. (2000). Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry 32, 211219.
Ladbury, J.W. & Cullis, C.F. (1958). Kinetics and mechanism of oxidation by permanganate. Chemical Reviews 58, 35.
Lai, S. & Lee, D.G. (2002). Lewis acid assisted permanganate oxidations. Tetrahedron 58, 98799887.
Leavitt, S.W., Follett, R.F. & Paul, E.A. (1996). Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysis. Radiocarbon 38, 231239.
Lefroy, R.D.B., Blair, G.J. & Strong, W.M. (1993). Changes in soil organic matter as measured by organic carbon fractions and 13C isotope abundance. Plant and Soil 156, 3.
Lester, E.D., Satomi, M. & Ponce, A. (2007). Microflora of extreme arid Atacama Desert soils. Soil Biology and Biochemistry 39, 704708.
Lucas, S.T. (2004). Evaluation of Labile Soil Carbon Test for Prediction of Soil Productivity Response to Organic Matter Management. University of Maryland, MS.
Maier, R.M., Drees, K.P., Neilson, J.W., Henderson, D.A., Quade, J. & Betancourt, J.L. (2004). Microbial life in the Atacama Desert. Science 306, 12891289.
Mckay, C.P. (2002). Two dry for life: the Atacama Desert and Mars. Ad Astra 14, 4.
Mckay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres-Villanueva, L., Andersen, D.T. & Landheim, R. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3, 393406.
Merck Chemical Company, K. (1974). Análisis de aguas: Una selección de metodologías químicos para la practica. Merck, Darmstadt, Germany.
Middleton, N., Thomas, D. & Programme, U.N.E. (1997). World Atlas of Desertification, 2nd edn, Arnold, Hodder.
Moody, P.W., Yo, S.A. & Aitken, R.L. (1997). Soil organic carbon, permanganate fractions and the chemical properties of acidic soils. Australian Journal of Soil Research 35, 7.
Navarro-Gonzalez, R. et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302, 10181021.
Navarro-Gonzalez, R. et al. (2006). The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proceedings of the National Academy of Sciences of the United States of America 103, 1608916094.
Navarro-Gonzalez, R., Iniguez, E., De La Rosa, J. & Mckay, C.P. (2009). Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to Mass Spectrometry and their implications for the search for organics on Mars by Phoenix and Future Space Missions. Astrobiology 9, 703715.
Navarro-Gonzalez, R., Vargas, E., De La Rosa, J., Raga, A. & Mckay, C.P. (2010). Reanalysis of the viking results suggests percholorate and organics at mid-latitudes on Mars. Journal of Geophysical Research – Planets 115, E12010.
Nelson, D.W. & Summers, L.E. (1996). Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods, ed. Sparks, D.L., pp. 9611010. American Society of Agronomy-Soil Science Society of America, Madison, WI.
Oades, J.M., Kirkman, M.A. & Wagner, G.H. (1970). Use of gas–liquid chromatography for determination of sugars extracted from soils by sulfuric acid. Soil Science Society of America Proceedings 34, 230235.
Oyonarte, C., Mingorance, M.D., Durante, P., Pinero, G. & Barahona, E. (2007). Indicators of change in the organic matter in arid soils. Science of the Total Environment 378, 133137.
Paez-Osuna, F., Fong-Lee, M. & Fernandez-Parez, H. (1984). Comparación de tres técnicas para analizar material orgánica en sedimentos nota científica. Anales del Instituto de Ciencias del Mar y Limnoligia 11, 233239.
Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A. & Lyon, D.J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal 61, 10581067.
Paul, E.A., Morris, S.J., Conant, R.T. & Plante, A.F. (2006). Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? Soil Science Society of America Journal 70, 10231035.
Pauwels, J.M., Wan Ranst, E., Verloo, M. & Mvondoze, A. (1992). Manuel de Laboratorio de Pédologie. AGCD, Belgique.
Rovira, P. & Vallejo, V.R. (2000). Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Communications in Soil Science and Plant Analysis 31, 19.
Rovira, P. & Vallejo, V.R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107, 109141.
Rovira, P. & Vallejo, V.R. (2007). Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biology and Biochemistry 39, 202215.
Rudakov, E.S. & Lobachev, V.L. (2000). The first step of oxidation of alkylbenzenes by permanganates in acidic aqueous solutions. Russian Chemical Bulletin 49, 17.
Schulten, H.R. & Leinweber, P. (1993). Pyrolysis-field ionization Mass-Spectrometry of agricultural soils and humic substances – effect of cropping systems and influence of the mineral matrix. Plant and Soil 151, 7790.
Shaabani, A. & Lee, D.G. (2001). Solvent free permanganate oxidations. Tetrahedron Letters 42, 58335836.
Siverman, H.P. & Skoog, D.A. (1963). Amperometic titrations with very dilute solutions of permanganate. Analytical Chemistry 35, 4.
Smith, J.J., Tow, L.A., Stafford, W., Cary, C. & Cowan, D.A. (2006). Bacterial diversity in three different antarctic cold desert mineral soils. Microbial Ecology 51, 413421.
Sorokina, N.E., Khaskov, M.A., Avdeev, V.V. & Nikol'Skaya, I.V. (2005). Reaction of graphite with sulfuric acid in the presence of KMnO4. Russian Journal of General Chemistry 75, 162168.
Stout, J.D., Goh, K.M. & Rafter, T.A. (1981). Chemistry and turnover of naturally occurring resistant organic compounds in soil. In Soil Biochemistry, ed. Paul, E.A. & Ladd, J.N., vol. 5, pp. 173. Marcel Dekker, New York.
Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geographical Review 38, 5594.
Tirol-Padre, A. & Ladha, J.K. (2004). Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal 68, 969978.
Valdivia-Silva, J.E., Fletcher, L.E., Navarro-Gonzalez, R., Mckay, C.P., Perez-Montaño, S., Condori-Apaza, R. & Conley, C.A. (2005) Organic matter analysis of the hyper-arid Peruvian Desert in comparison to other hyper-arid environments. American Geophysical Union, Fall Meeting, 2005 San Francisco.
Valdivia-Silva, J.E., Navarro-Gonzalez, R. & Mckay, C. (2009). Thermally evolved gas analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru: implications for the Phoenix mission. Advances in Space Research 44, 254266.
Valdivia-Silva, J.E., Navarro-González, R., Ortega-Gutierrez, F., Fletcher, L.E., Perez-Montaño, S., Condori-Apaza, R. & Mckay, C.P. (2011). Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analog. Geochimica et Cosmochimica Acta 75, 17.
Valdivia-Silva, J.E., Navarro-Gonzalez, R., Fletcher, L., Perez-Montano, S., Condori-Apaza, R. & Mckay, C.P. (2012). Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils. Advances in Space Research 50, 108122.
Vogel, A.I. (1978). Vogel's Textbook of Quantitative Inorganic Analysis: Including Elementary Instrumental Analysis. Longman Science & Technology, England.
Vogel, A.I. (1989). Vogel's Textbook of Quantitative Chemical Analysis. John Wiley & Sons Inc, New York.
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63, 251264.
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gomez-Silva, B., Amundson, R., Friedmann, E.I. & Mckay, C.P. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology 52, 389398.
Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. & Samson-Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: a simplified method for lab and field use. American Journal of Alternative Agriculture 18, 14.
Wierzchos, J., Ascaso, C. & Mckay, C.P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415422.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed