Skip to main content Accessibility help

Circumbinary habitability niches

  • Paul A. Mason (a1) (a2), Jorge I. Zuluaga (a3), Pablo A. Cuartas-Restrepo (a3) and Joni M. Clark (a2)


Binaries could provide the best niches for life in the Galaxy. Although counterintuitive, this assertion follows directly from stellar tidal interaction theory and the evolution of lower mass stars. There is strong evidence that chromospheric activity of rapidly rotating young stars may be high enough to cause mass loss from atmospheres of potentially habitable planets. The removal of atmospheric water is most critical. Tidal breaking in binaries could help reduce magnetic dynamo action and thereby chromospheric activity in favour of life. We call this the Binary Habitability Mechanism (BHM) that we suggest allows for water retention at levels comparable to or better than the Earth. We discuss novel advantages that life may exploit, in these cases, and suggest that life may even thrive on some circumbinary planets. We find that while many binaries do not benefit from BHM, high-quality niches do exist for various combinations of stars between 0.55 and 1.0 solar masses. For a given pair of stellar masses, BHM operates only for certain combinations of period and eccentricity. Binaries having a solar-type primary seem to be quite well-suited niches having wide and distant habitable zones with plentiful water and sufficient light for photosynthetic life. We speculate that, as a direct result of BHM, conditions may be suitable for life on several planets and possibly even moons of giant planets orbiting some binaries. Lower mass combinations, while more restrictive in parameter space, provide niches lasting many billions of years and are rich suppliers of photosynthetic photons. We provide a publicly available web-site ( or, which calculates the BHM effects presented in this paper.


Corresponding author


Hide All
Basri, G. (1987). Astrophys. J. 316, 377.
Clanton, C. (2013). Astrophys. J. Lett. 768, L15.
Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. (2000). Astron. Astrophys. Suppl. 141, 371.
Grießmeier, J.-M., Preusse, S., Khodachenko, M., Motschmann, U., Mann, G. & Rucker, H.O. (2007). Planet. Space Sci. 55, 618.
Haghighipour, N. (2009). ArXiv e-prints.
Haghighipour, N. & Kaltenegger, L. (2013). Astrophys. J. 777, 166.
Harrington, R.S. (1977). Astron. J. 82, 753.
Heller, R. & Armstrong, J. (2014). ArXiv e-prints.
Heller, R. & Barnes, R. (2013). Astrobiology 13, 18.
Heller, R. & Zuluaga, J.I. (2013). Astrophys. J. Lett. 776, L33.
Hinkel, N.R. & Kane, S.R. (2013). Astrophys. J. 774, 27.
Holman, M.J. & Wiegert, P.A. (1999). Astron. J. 117, 621.
Huang, S.-S. (1960). Publ. Astron. Soc. Pacific 72, 106.
Hut, P. (1981). Astron. Astrophys. 99, 126.
Kane, S.R. & Hinkel, N.R. (2013). Astrophys. J. 762, 7.
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.
Kiang, N.Y., Segura, A., Tinetti, G., Govindjee, , Blankenship, R.E., Cohen, M., Siefert, J., Crisp, D. & Meadows, V.S. (2007a). Astrobiology 7, 252.
Kiang, N.Y., Siefert, J., Govindjee, , & Blankenship, R.E. (2007b). Astrobiology 7, 222.
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Astrophys. J. 765, 131.
Kopparapu, R.K., Ramirez, R.M., SchottelKotte, J., Kasting, J.F., Domagal-Goldman, S. & Eymet, V. (2014). Astrophys. J. Lett. 787, L29.
Lammer, H., Kasting, J.F., Chassefière, E., Johnson, R.E., Kulikov, Y.N. & Tian, F. (2009). “Atmospheric Escape and Evolution of Terrestrial Planets and Satellites”, p. 399.
Lammer, H., Lichtenegger, H.I.M., Khodachenko, M.L., Kulikov, Y.N. & Griessmeier, J. (2012). In Astronomical Society of the Pacific Conf. Series, vol. 450, ed. Beaulieu, J.P., Dieters, S. & Tinetti, G., pp. 139.
Liu, H.G. (2012). Acta Astron. Sin. 53, 538.
Lovelock, J.E. (1972). Atmos. Environ. (1967) 6, 579.
Mason, P.A. & Clark, J.M. (2012). In American Astronomical Society Meeting Abstracts, vol. 220, American Astronomical Society Meeting, Abstracts #220, 525.04.
Mason, P.A., Zuluaga, J.I., Clark, J.M. & Cuartas-Restrepo, P.A. (2013). Astrophys. J. Lett. 774, L26.
Müller, T.W. & Haghighipour, N. (2014). Astrophys. J. 782, 26.
Quarles, B., Musielak, Z.E. & Cuntz, M. (2012). Astrophys. J. 750, 14.
Rauer, H., et al. (2013). arXiv:1310.0696.
Ricker, G.R., et al. (2010). Bull. Am. Astron. Soc. 42, 459.
Tian, F. (2009). Astrophys. J. 703, 905.
Welsh, W.F., Orosz, J.A., Carter, J.A. & Fabrycky, D.C. (2014). In IAU Symp., vol. 293, ed. Haghighipour, N., pp. 125132.
Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L. & Redfield, S. (2005). Astrophys. J. Lett. 628, L143.
Zahn, J.-P. (2008). EAS Publ. Ser. 29, 67.
Zendejas, J., Segura, A. & Raga, A.C. (2010). Icarus 210, 539.
Zuluaga, J.I., Bustamante, S., Cuartas, P.A. & Hoyos, J.H. (2013). Astrophys. J. 770, 23.
Zuluaga, J.I., Salazar, J.F., Cuartas-Restrepo, P. & Poveda, G. (2014). Biogeosci. Discuss. 11, 8443.


Circumbinary habitability niches

  • Paul A. Mason (a1) (a2), Jorge I. Zuluaga (a3), Pablo A. Cuartas-Restrepo (a3) and Joni M. Clark (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed