Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T18:57:55.697Z Has data issue: false hasContentIssue false

The Thermal History and Structure of Cometary Nuclei

Published online by Cambridge University Press:  12 April 2016

Hans Rickman*
Affiliation:
Astronomiska ObservatorietBox 515 S-751 20 UppsalaSweden

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cometary nuclei are often considered to be the most primitive bodies of the solar system. Thus it is particularly important to find out what structural changes may have been brought about as a result of their thermal evolution. Is there reason to believe that the bulk composition of the nucleus of a present-day short-period comet may differ from that of the original planetesimal in the solar nebula? Apart from the development of a non-volatile surface layer (‘dust mantle’), what further depth-dependent differentiation can we expect in such a nucleus? These are the ultimate questions addressed in this paper, and attention is focused on the two most active stages of thermal evolution: the early planetesimal stage with internal heating basically due to radioactive decay, and the recent or present cometary phase with strong external heating due to insolation of the surface.

Type
Section IV: The Cometary Nucleus
Copyright
Copyright © Kluwer 1991

References

Bar-Nun, A., and Kleinfeld, I. (1989) ‘On the Temperature and Gas Composition in the Region of Comet Formation,’ Icarus 80, 243253.Google Scholar
Bar-Nun, A., and Prialnik, D. (1989) ‘Formation of Comets – Laboratory Studies and Modelling,’ invited paper at Asteroids, Comets, Meteors III, Uppsala Univ.Google Scholar
Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L. (1985) ‘Trapping and Release of Gases by Water Ice and Implications for Icy Bodies,’ Icarus 63, 317332.Google Scholar
Bar-Nun, A., Dror, J., Kochavi, E., and Laufer, D. (1987) ‘Amorphous Water Ice and Its Ability to Trap Gases,’ Phys. Rev. B 35, 24272435.CrossRefGoogle ScholarPubMed
Bar-Nun, A., Kleinfeld, I., and Kochavi, E. (1988) ‘Trapping of Gas-Mixtures in Amorphous Water Ice,’ Phys. Rev. B 38, 77497754.Google Scholar
Bar-Nun, A., Heifetz, E., and Prialnik, D. (1989) ‘Thermal Evolution of Comet P/Tempel 1 – Representing the Group of Targets for the CRAF and CNSR Missions,’ Icarus 79, 116124.CrossRefGoogle Scholar
Cameron, A.G.W. (1985) ‘Formation and Evolution of the Primitive Solar Nebula,’ in Black, D.C. and Matthews, M.S. (eds.), Protostars and Planets II, Univ. Arizona Press, Tucson, pp. 10731099.Google Scholar
Carslaw, H.S., and Jaeger, J.C. (1959) Conduction of Heat in Solids, Oxford Univ. Press, London.Google Scholar
Carusi, A., Kresák, L., Perozzi, E., and Valsecchi, G.B. (1985) Long-Term Evolution of Short-Period Comets, Adam Hilger, Bristol.Google Scholar
Daniels, P.A., and Hughes, D.W. (1981) ‘The Accretion of Cosmic Dust – A Computer Simulation,’ Mon. Not. R. Astron. Soc. 195, 10011009.Google Scholar
Donn, B., and Hughes, D.W. (1985) ‘On the Structure of the Cometary Nucleus,’ Bull. Amer. Astr. Soc. 17, 689 (abstract).Google Scholar
Donn, B., and Rahe, J. (1982) ‘Structure and Origin of Cometary Nuclei,’ in Wilkening, L.L. (ed.), Comets, Univ. Arizona Press, Tucson, pp. 203226.CrossRefGoogle ScholarPubMed
Espinasse, S. (1989) ‘Modelisation du comportement thermique et de la différenciation chimique des noyaux de comètes,’ Doctoral thesis, Univ. of Grenoble.Google Scholar
Espinasse, S., Schmitt, B., and Klinger, J. (1988) ‘Modelisation du comportement thermique et la différenciation chimique des noyaux de comètes: Résultats préliminaires,’ in Festou, M.C. and Chabod, D. (eds.), Comptes Rendus des Journées de Planétologie (CNRS-INSU), Observatoire de Besançon, pp. 207210.Google Scholar
Fanale, F.P., and Salvail, J.R. (1984) ‘An Idealized Short-Period Comet Model: Surface Insolation, H2O Flux, Dust Flux, and Mantle Evolution,’ Icarus 60, 476511.Google Scholar
Fanale, F.P., and Salvail, J.R. (1987) ‘The Loss and Depth of CO2 Ice in Comet Nuclei,’ Icarus 72, 535554.Google Scholar
Fernández, J.A. (1985) ‘Dynamical Capture and Physical Decay of Short-Period Comets,’ Icarus 64, 308319.Google Scholar
Fernández, J.A. (1990) ‘Collisions of Comets with Meteoroids,’ in Lagerkvist, C.-I., Rickman, H., Lindblad, B.A., and Lindgren, M. (eds.), Asteroids, Comets, Meteors III, Uppsala Univ., pp. 309312.Google Scholar
Fernandez, J.A., and Ip, W.-H. (1981) ‘Dynamical Evolution of a Cometary Swarm in the Outer Planetary Region,’ Icarus 47, 470479.Google Scholar
Geiss, J. (1987) ‘Composition Measurements and the History of Cometary Matter,’ Astron. Astrophys. 187, 859866.Google Scholar
Ghormley, J.A. (1968) ‘Enthalpy Changes and Heat Capacity Changes in the Transformation from High Surface Area Amorphous Ice to Stable Hexagonal Ice,’ J. Chem. Phys. 48, 503508.CrossRefGoogle Scholar
Green, J.R. (1986) ‘Stress, Fracture, and Outburst in Cometary Nuclei,’ Bull. Amer. Astr. Soc. 18, 800 (abstract).Google Scholar
Greenberg, J.M. (1982) ‘What Are Comets Made Of? A Model Based on Interstellar Dust,’ in Wilkening, L.L. (ed.), Comets, Univ. Arizona Press, Tucson, pp. 131163.Google Scholar
Greenberg, J.M. (1983) ‘Interstellar Dust, Comets, Comet Dust and Carbonaceous Meteorites,’ in Lagerkvist, C.-I. and Rickman, H. (eds.), Asteroids, Comets, Meteors, Uppsala Univ., pp. 259268.Google Scholar
Greenberg, J.M. (1986) ‘Fluffy Comets,’ in Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Asteroids, Comets, Meteors II, Uppsala Univ., pp. 221223.Google Scholar
Greenberg, J.M., and Grim, R. (1986) ‘The Origin and Evolution of Comet Nuclei and Comet Halley Results,’ in Battrick, B., Rolfe, R., and Reinhard, R. (eds.), Exploration of Halley’s Comet, ESA SP-250, vol. II, pp. 255263.Google Scholar
Greenberg, J.M., and Hage, J.I. (1990) ‘From Interstellar Dust to Comets: A Unification of Observational Constraints,’ Astrophys. J., in press.CrossRefGoogle Scholar
Grün, E., and Jessberger, E.K. (1990) ‘Dust,’ in Huebner, W.F. (ed.), Physics and Chemistry of Comets, Springer Verlag, in press.Google Scholar
Herman, G., and Podolak, M. (1985) ‘Numerical Simulation of Comet I. Nuclei Water-ice Comets,’ Icarus 61, 252266.CrossRefGoogle Scholar
Herman, G., and Weissman, P.R. (1987) ‘Numerical Simulation of Cometary Nuclei. III. Internal Temperatures of Cometary Nuclei,’ Icarus 69, 314328.CrossRefGoogle Scholar
Houpis, H.L.F. (1990) ‘Models of Cometary Nuclei,’ in Mason, J. and Moore, P. (eds.), Comet Halley 1986: Worldwide Investigations, Results and Interpretations, Ellis-Horwood Publ. Co., in press.Google Scholar
Houpis, H.L.F., Ip, W.-H., and Mendis, D.A. (1985) ‘The Chemical Differentiation of the Cometary Nucleus: The Process and Its Consequences,’ Astrophys. J. 295, 654667.Google Scholar
Hughes, D.W. (1985) ‘The Size, Mass, Mass Loss and Age of Halley’s Comet,’ Mon. Not. R. Astr. Soc. 213, 103109.CrossRefGoogle Scholar
Irvine, W.M., Leschine, S.B., and Schloerb, F.P. (1980) ‘Thermal History, Chemical Composition and Relationship of Comets to the Origin of Life,’ Nature 283, 748749.Google Scholar
Johnson, R.E., Cooper, J.F., Lanzerotti, L.J., and Strazzulla, G. (1987) ‘Radiation Formation of a Non-Volatile Comet Crust,’ Astron. Astrophys. 187, 889892.Google Scholar
Keller, H.U. (1989) ‘Comets – Dirty Snowballs Or Icy Dirtballs?,’ in Hunt, J. and Guyenne, T.D. (eds.), Physics and Mechanics of Cometary Materials, ESA SP-302, pp. 3945.Google Scholar
Klinger, J. (1980) ‘Influence of a Phase Transition of Ice on the Heat and Mass Balance of Comets,’ Science 209, 271272.CrossRefGoogle ScholarPubMed
Klinger, J. (1981) ‘Some Consequences of a Phase Transition of Water Ice on the Heat Balance of Comet Nuclei,’ Icarus 47, 320324.Google Scholar
Klinger, J. (1983) ‘Classification of Cometary Orbits Based on the Concept of Orbital Mean Temperature,’ Icarus 55, 169176.Google Scholar
Klinger, J., Benkhoff, J., Espinasse, S., Grün, E., Ip, W.-H., Joó, F., Keller, H.U., Kochan, H., Kohl, H., Roessler, K., Seboldt, W., Spohn, T., and Thiel, K. (1989) ‘How Far Do Results of Recent Simulation Experiments Fit Current Models of Cometary Nuclei?,’ Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Inst., Houston, pp. 493497.Google Scholar
Kochan, H., Feuerbacher, B., Joó, F., Klinger, J., Seboldt, W., Bischoff, A., Düren, H., Stöffler, D., Spohn, T., Fechtig, H., Grün, E., Kohl, H., Krankowsky, D., Roessler, K., Thiel, K., Schwehm, G., and Weishaupt, U. (1989) ‘Comet Simulation Experiments in the DFVLR Space Simulators,’ Adv. Space Res. 9, No. 3, pp. 113122.Google Scholar
Kouchi, A. (1987) ‘Vapour Pressure of Amorphous H2O Ice and Its Astrophysical Implications,’ Nature 330, 550552.Google Scholar
Kresák, L. (1985) ‘The Aging and Lifetimes of Comets,’ in Carusi, A. and Valsecchi, G.B. (eds.), Dynamics of Comets: Their Origin and Evolution, D. Reidel Publ. Co., Dordrecht/Boston/Lancaster, pp. 279302.Google Scholar
Kührt, E. (1984) ‘Temperature Profiles and Thermal Stresses in Cometary Nuclei,’ Icarus 60, 512521.Google Scholar
Kührt, E., Mohlmann, D., Giese, B., and Tauber, F. (1986) ‘Thermal Stresses and Dust Dynamics on Comets,’ in Battrick, B., Rolfe, R., and Reinhard, R. (eds.), Exploration of Halley’s Comet, ESA SP-250, vol. II, pp. 385388.Google Scholar
Lamarre, J.-M. (1989) ‘Détection de l’émission infra-rouge du noyau de la comète de Halley à l’aide de l’instrument IKS embarqué sur les sondes spatiales Vega,’ Doctoral thesis, Univ. of Paris VII.Google Scholar
Laufer, D., Kochavi, E., and Bar-Nun, A. (1987) ‘Structure and Dynamics of Amorphous Water Ice,’ Phys. Rev. B 36, 92199227.Google Scholar
Lewis, J.S. (1971) ‘Satellites of the Outer Planets: Their Physical and Chemical Nature,’ Icarus 15, 174185.Google Scholar
Lewis, J.S., and Prinn, R.G. (1980) ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula,’ Astrophys. J. 238, 357364.CrossRefGoogle Scholar
McDonnell, J.A.M., Pankiewicz, G.S., Birchley, P.N.W., Green, S.F., and Perry, C.H. (1990) ‘Dust Mass Distributions: The Perspective from Giotto’s Measurements at P/Halley,’ in Proc. of the workshop on Analysis of Returned Comet Nucleus Samples, Milpitas, CA, in press.Google Scholar
McIntosh, B.A., and Hajduk, A. (1983) ‘Comet Halley Meteor Stream: A New Model,’ Mon. Not. R. Astr. Soc. 205, 931943.Google Scholar
McKay, C.P., Squyres, S.W., and Reynolds, R.T. (1986) ‘Methods for Computing Comet Core Temperatures,’ Icarus 66, 625629.Google Scholar
Morfill, G.E., Tscharnuter, W., and Völk, H.J. (1985) ‘Dynamical and Chemical Evolution of the Protoplanetary Nebula,’ in Black, D.C. and Matthews, M.S. (eds.), Protostars and Planets II, Univ. Arizona Press, Tucson, pp. 493533.Google Scholar
Neugebauer, M. (1987) ‘The Comet Rendezvous Asteroid Flyby Mission,’ in Rolfe, E.J. and Battrick, B. (eds.), Diversity and Similarity of Comets, ESA SP-278, pp. 517522.Google Scholar
Patashnick, H., Rupprecht, G., and Schuerman, D.W. (1974) ‘Energy Source for Comet Outbursts,’ Nature 250, 313314.CrossRefGoogle Scholar
Peale, S.J. (1989) ‘On the Density of Halley’s Comet,’ Icarus 82, 3649.Google Scholar
Prialnik, D. (1989) ‘Thermal Evolution of Cometary Nuclei,’ Adv. Space Res. 9, No. 3, pp. 2540.Google Scholar
Prialnik, D., and Bar-Nun, A. (1987) ‘On the Evolution and Activity of Cometary Nuclei,’ Astrophys. J. 313, 893905.Google Scholar
Prialnik, D., and Bar-Nun, A. (1988) ‘The Formation of a Permanent Dust Mantle and Its Effect on Cometary Activity,’ Icarus 74, 272283.Google Scholar
Prialnik, D., Bar-Nun, A., and Podolak, M. (1987) ‘Radiogenic Heating of Comets by 26Al and Implications for Their Time of Formation,’ Astrophys. J. 319, 9931002.Google Scholar
Rickman, H. (1986) ‘Masses and Densities of Comets Halley and Kopff,’ in Melita, O. (ed.), Comet Nucleus Sample Return, ESA SP-249, pp. 195205.Google Scholar
Rickman, H. (1987) ‘Physical Evolution of Comets,’ in Ceplecha, Z. and Pecina, P. (eds.), Interplanetary Matter, Publ. Astron. Inst. Czech. Acad. Sci. No. 67, vol. 2, pp. 3746.Google Scholar
Rickman, H. (1989) ‘The Nucleus of Comet Halley: Surface Structure, Mean Density, Gas and Dust Production,’ Adv. Space Res. 9, No. 3, pp. 5971.Google Scholar
Rickman, H., and Fernández, J.A. (1986) ‘Formation and Blowoff of a Cometary Dust Mantle,’ in Melita, O. (ed.), Comet Nucleus Sample Return, ESA SP-249, pp. 185194.Google Scholar
Rickman, H., and Froeschlé, C. (1983) ‘Thermal Models for the Nucleus of Comet P/ Halley,’ in Gombosi, T.I. (ed.), Cometary Exploration, Hungarian Acad. Sci., vol. I, pp. 7584.Google Scholar
Rickman, H., and Huebner, W.F. (1990) ‘Comet Formation and Evolution,’ in Huebner, W.F. (ed.), Physics and Chemistry of Comets, Springer Verlag, in press.Google Scholar
Rickman, H., Froeschlé, C., and Klinger, J. (1985) ‘Amorphous-Crystalline Phase Transition and the Light Curve of Comet P/Halley,’ in Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.), Ices in the Solar System, NATO ASI Series C, vol. 156, pp. 419428.Google Scholar
Rickman, H., Fernández, J.A., and Gustafson, B.A.S. (1990) ‘Formation of Stable Dust Mantles on Short-Period Comet Nuclei,’ Astron. Astrophys., in press.Google Scholar
Sagdeev, R.Z., Elyasberg, P.E., and Moroz, V.I. (1988) ‘Is the Nucleus of Comet Halley a Low Density Body?,’ Nature 331, 240242.CrossRefGoogle Scholar
Schmitt, B. (1986) ‘La surface de la glace: Structure, dynamique et interactions. Implications astrophysiques,’ Doctoral thesis, Univ. of Grenoble.Google Scholar
Schmitt, B., and Klinger, J. (1987) ‘Different Trapping Mechanisms of Gases by Water Ice and Their Relevance for Comet Nuclei,’ in Rolfe, E.J. and Battrick, B. (eds.), Diversity and Similarity of Comets, ESA SP-278, pp. 613619.Google Scholar
Schmitt, B., Grim, R.J.A., and Greenberg, J.M. (1988a) ‘Molecular Diffusion in Ices -Implications for the Composition of Interstellar Grain Mantles and Comet Nuclei,’ in Bussoletti, E., Fusco, C., and Largo, G. (eds.), Experiments on Cosmic Dust Analogues, Kluwer Acad. Publ., pp. 259269.Google Scholar
Schmitt, B., Espinasse, S., Klinger, J., and Greenberg, J.M. (19886) ‘Effet de la température sur l’évolution et la différenciation chimique des glaces cométaires,’ in Festou, M.C. and Chabod, D. (eds.), Comptes Rendus des Journées de Planétologie (CNRS-INSU), Observatoire de Besançon, pp. 203206.Google Scholar
Schmitt, B., Espinasse, S., Grim, R.J.A., Greenberg, J.M., and Klinger, J. (1989) ‘Laboratory Studies of Cometary Ice Analogues’, in Hunt, J. and Guyenne, T.D. (eds.), Physics and Mechanics of Cometary Materials, ESA SP-302, pp. 6569.Google Scholar
Shul’man, L.M. (1972) ‘The Evolution of Cometary Nuclei,’ in Chebotarev, G.A., Kazimirchak-Polonskaya, E.I., and Marsden, B.G. (eds.), The Motion, Evolution of Orbits, and Origin of Comets, D. Reidel Publ. Co., Dordrecht, pp. 271276.Google Scholar
Shul’man, L.M. (1983) ‘Composition of Cometary Nuclei. A Cosmogonical Approach,’ Acad. Sci. USSR Space Res. Inst., prepr. 771, 19 pages (in Russian).Google Scholar
Smoluchowski, R. (1981) ‘Amorphous Ice and the Behavior of Cometary Nuclei,’ Astrophys. J. 244, L31L34.CrossRefGoogle Scholar
Smoluchowski, R. (1982) ‘Heat Transport in Porous Cometary Nuclei,’ J. Geophys. Res. 87, Supp. A, 422.Google Scholar
Smoluchowski, R. (1985) ‘Amorphous and Porous Ices in Cometary Nuclei,’ in Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.), Ices in the Solar System, NATO ASI Series C, vol. 156, pp. 397406.Google Scholar
Spohn, T., Benkhoff, J., Klinger, J., Grün, E., and Kochan, H. (1989) ‘Thermal Modelling of Two KOSI Comet Nucleus Simulation Experiments,’ Adv. Space Res. 9, No. 3, pp. 127131.Google Scholar
Stern, S.A. (1988) ‘Collisions in the Oort Cloud,’ Icarus 73, 499507.Google Scholar
Stern, S.A., and Shull, J.M. (1988) ‘The Influence of Supernovae and Passing Stars on Comets in the Oort Cloud,’ Nature 332, 407411.Google Scholar
Strazzulla, G., Calcagno, L., and Foti, G. (1983) ‘Polymerization Induced on Interstellar Grains by Low-Energy Cosmic Rays,’ Mon. Not. R. Astr. Soc. 204, 59P62P.Google Scholar
Tauber, F., and Kührt, E. (1987) ‘Thermal Stresses in Cometary Nuclei,’ Icarus 69, 8390.Google Scholar
Wallis, M.K. (1980) ‘Radiogenic Melting of Primordial Comet Interiors,’ Nature 284, 431433.Google Scholar
Wallis, M.K., and MacPherson, A.K. (1981) ‘On the Outgassing and Jet Thrust of Snowball Comets,’ Astron. Astrophys. 98, 4549.Google Scholar
Weaver, H.A. (1989) ‘The Volatile Composition of Comets,’ ST SCI Prepr. No. 316.Google Scholar
Weissman, P.R. (1980) ‘Stellar Perturbations of the Cometary Cloud,’ Nature 288, 242243.Google Scholar
Weissman, P.R. (1986a) ‘How Pristine are Cometary Nuclei?,’ in Melita, O. (ed.), Comet Nucleus Sample Return, ESA SP-249, pp. 1525.Google Scholar
Weissman, P.R. (1986b) ‘Are Cometary Nuclei Primordial Rubble Piles?,’ Nature 288, 242243.Google Scholar
Weissman, P.R., and Stern, S.A. (1990) ‘Physical Processing of Cometary Nuclei,’ in Proc. of the workshop on Analysis of Returned Comet Nucleus Samples, Milpitas, CA, in press.Google Scholar
Whipple, F.L. (1950) ‘A Comet Model. I. The Acceleration of Comet Encke,’ Astrophys. J. 111, 375394.Google Scholar
Whipple, F.L., and Stefanik, R.P. (1966) ‘On the Physics and Splitting of Cometary Nuclei,’ Mém. Soc. R. Sci. Liège 12, 3352.Google Scholar
Wood, J.A. (1987) ‘Rosetta: A Mission to Sample the Nucleus of a Comet,’ in Rolfe, E.J. and Battrick, B. (eds.), Diversity and Similarity of Comets, ESA SP-278, pp. 531537.Google Scholar
Yabushita, S., and Wada, K. (1988) ‘Radioactive Heating and Layered Structure of Cometary Nuclei,’ Earth, Moon, Planets 40, 303313.Google Scholar
Yamamoto, T. (1985) ‘Formation Environment of Cometary Nuclei in the Primordial Solar Nebula,’ Astron. Astrophys. 142, 3136.Google Scholar
Yamamoto, T., and Kozasa, T. (1988) ‘The Cometary Nucleus as an Aggregate of Planetesimals,’ Icarus 75, 540551.Google Scholar
Yamamoto, T., Nakagawa, N., and Fukui, Y. (1983) ‘The Chemical Composition and Thermal History of the Ice of a Cometary Nucleus,’ Astron. Astrophys. 122, 171176.Google Scholar