Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T14:08:55.855Z Has data issue: false hasContentIssue false

Pulsar Winds

Published online by Cambridge University Press:  12 April 2016

Jonathan Arons*
Affiliation:
University of California

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The shock excitation of pulsar powered nebulae (plerions) is discussed, based on recent theoretical work on the structure of relativistic, collisionless magnetosonic shock waves. This theory is used to outline a model in which the γ−2 injection spectrum of the Crab Nebula is satisfactorily accounted for. The same theory suggests a model of the “wisp” features in the Crab Nebula which accounts for these time variable features in the surface bightness as compressions associated with the magnetic overshoots within the shock structure. It is pointed out that this theory suggests observable variability in the high energy gamma rays from the Crab Nebula (ε > 50 MeV).

Type
Part 6 Winds and the ISM
Copyright
Copyright © Astronomical Society of the Pacific 1996

References

Alsop, D., & Arons, J. 1988, Phys. Fluids, 31, 839.CrossRefGoogle Scholar
Arons, J. 1983, in Proc. Workshop on Electron-Positron Pairs in Astrophysics, ed. Burns, M.L., Harding, A.K., & Ramaty, R., p. 163.Google Scholar
Arons, J. 1992, in Proc. IAU Colloq. No. 128, Hankins, T.H. Rankin, J.M. & Gil, J.A., eds. (Zielona Gora: Pedagogical University Press), 56 Google Scholar
Arons, J. 1993, ApJ, 408, 160 CrossRefGoogle Scholar
Arons, J. 1996, A&A, In PressGoogle Scholar
Aschenbach, B., & Brinkmann, W. 1975, A&A, 41, 147 Google Scholar
Blandford, R.D. & Romani, R. 1988, MNRAS, 234, 57pGoogle Scholar
Coroniti, F.V. 1990, ApJ, 349, 538 Google Scholar
de Jager, O.C. & Harding, A.K. 1992, ApJ, 396, 161 Google Scholar
Gallant, Y.A. et al. 1992, ApJ, 391, 73 Google Scholar
Gallant, Y.A. & Arons, J. 1994, ApJ, 435, 230 CrossRefGoogle Scholar
Gallant, Y.A. & Kirk, J. 1996, A&A, in pressGoogle Scholar
Goldreich, P. & Julian, W.H. 1969, ApJ, 157, 869 CrossRefGoogle Scholar
Groth, E. 1975 ApJS, 29, 453 Google Scholar
Hester, J.J. et al. 1995, ApJ, 448, 240 CrossRefGoogle Scholar
Hoshino, M. & Arons, J. 1991, Phys. Fluids B, 3, 818 CrossRefGoogle Scholar
Hoshino, M. et al. 1992, ApJ, 390, 454 Google Scholar
Kaspi, V.M. et al. 1994, ApJ, 422, L83 CrossRefGoogle Scholar
Kennel, C. & Coroniti, F.V. 1984a, ApJ, 283, 694 Google Scholar
Kennel, C. & Coroniti, F.V. 1984b, ApJ, 283, 710 Google Scholar
Lampland, C.O. 1921, PASP, 33, 79 Google Scholar
Langdon, A.B., Arons, J., & Max, C.E. 1988, Phys.Rev.Lett, 61, 779 CrossRefGoogle Scholar
Lyne, A.G., Pritchard, R.S. & Smith, F.G. 1993, MNRAS, 265, 1003 Google Scholar
Melatos, A. & Melrose, D.B. 1996, MNRAS, in pressGoogle Scholar
Michel, F.C. 1994, ApJ, 432, 397 Google Scholar
Pelling, R.M. et al. 1987, ApJ, 319, 416 CrossRefGoogle Scholar
Rees, M.J. & Gunn, J.E. 1974, MNRAS, 167, 1 Google Scholar
Scargle, J.D. 1969, ApJ, 156, 401 Google Scholar
Schmidt, G.D., Angel, J.R.P. & Beaver, E.A. 1979, ApJ, 433, L37 Google Scholar
Shklovsky, J.S. 1970, ApJ, 159, L77.CrossRefGoogle Scholar
van den Bergh, S. & Pritchett, C.J. 1989, ApJ, 343, L69 Google Scholar