Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T21:05:34.928Z Has data issue: false hasContentIssue false

Observing the First Stars, One Star at a Time

Published online by Cambridge University Press:  19 September 2016

Abraham Loeb*
Affiliation:
Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA; aloeb@cfa.harvard.edu

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-Ray Bursts (GRBs) are believed to originate in compact remnants (black holes or neutron stars) of massive stars. Their high luminosities make them detectable out to the edge of the visible universe. We describe the many advantages of GRB afterglows relative to quasars as probes of the intergalactic medium during the epoch of reionization. The Swift satellite, planned for launch by the end of 2004, will likely open a new era in observations of the high redshift universe.

Type
Part VIII Supernovae, Gamma-Ray Bursters, and Cosmology
Copyright
Copyright © Springer-Verlag 2005

References

1. Abel, T., Bryan, G.L., Norman, M.L.: Science 295, 93 (2002)CrossRefGoogle Scholar
2. Andersen, M.I. et al.: Astron. Astrophys. 364, L54 (2000)Google Scholar
3. Barkana, R., Loeb, A.: Phys. Rep. 349, 125 (2001)Google Scholar
4. Barkana, R., Loeb, A.: Nature 421, 341 (2003)Google Scholar
5. Barkana, R., Loeb, A.: astro-ph 0305470 (2003)Google Scholar
6. Blain, A.W., Natarajan, P.: Mon. Not. R. Astron. Soc. 312, L35 (2000)Google Scholar
7. Bloom, J.S., Kulkami, S.R., Djorgovski, S.G.: Astron. J. 123, 1111 (2002)Google Scholar
8. Bromm, V., Coppi, P.S., Larson, R.B.: Astrophys. J. 564, 23 (2002)Google Scholar
9. Bromm, V., Loeb, A.: Astrophys. J. 575, 111 (2002)Google Scholar
10. Carilli, C.L., Gnedin, N.Y., Owen, F.: Astrophys. J. 577, 22 (2002)Google Scholar
11. Cen, R.: astro-ph 0210473 (2002)Google Scholar
12. Cen, R.: astro-ph 0303236 (2003)Google Scholar
13. Ciardi, B., Loeb, A.: Astrophys. J. 540, 687 (2000)Google Scholar
14. Ciardi, B., Ferrara, A., White, S.D.M.: astro-ph 0302451 (2003)Google Scholar
15. Dietrich, M., Hamann, F., Appenzeller, I., Vestergaard, M.: astro-ph 0306584 (2003)Google Scholar
16. Furlanetto, S.R., Loeb, A.: Astrophys. J. 579, 1 (2002)CrossRefGoogle Scholar
17. Furlanetto, S.R., Loeb, A.: Astrophys. J. 588, 18 (2003)Google Scholar
18. Fynbo, J.P.U. et al.: astro-ph 0306403 (2003)Google Scholar
19. Gunn, J.E., Peterson, B.A.: Astrophys. J. 142, 1633 (1965)Google Scholar
20. Haiman, Z., Holder, G.: astro-ph 0302403 (2003)Google Scholar
21. Hamann, F., Dietrich, M., Sabra, B., Warner, C.: In: Origin and Evolution of the Elements, eds. McWilliam, A., Rauch, M. (Proc. Carnegie Observ. Astrophys. Series, Vol. 4, 2003); astro-ph 0306068 (2003)Google Scholar
22. Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., Hartmann, D.H.: Astrophys. J. 591, 288 (2003)Google Scholar
23. Kulkami, S.R. et al.: SPIE 4005, 9 (2000)Google Scholar
24. Lamb, D.Q., Reichart, D.E.: Astrophys. J. 536, 1 (2000)Google Scholar
25. Loeb, A., Barkana, R.: Ann. Rev. Astron. Astrophys. 39, 19 (2001)Google Scholar
26. Loeb, A., Peebles, P.J.E.: Astrophys. J. 589, 29 (2003)Google Scholar
27. Miralda-Escudé, J.: Astrophys. J. 501, 15 (1998)Google Scholar
28. Perna, R., Loeb, A.: Astrophys. J. 501, 467 (1998)Google Scholar
29. Somerville, R., Livio, M.: astro-ph 030301 (2003)Google Scholar
30. Spergel, D.N. et al.: astro-ph 0302209 (2003)Google Scholar
31. Stanek, K.Z. et al.: Astrophys. J. Lett. 591, L17 (2003)Google Scholar
32. Totani, T.: Astrophys. J. Lett. 486, L71 (1997)CrossRefGoogle Scholar
33. Wijers, R.A.M.J., Bloom, J.S., Bagla, J.S., Natarajan, P.: Mon. Not. R. Astron. Soc. 294, L13 (1998)Google Scholar
34. Wyithe, J.S.B., Loeb, A.: Astrophys. J. 581, 886 (2002)Google Scholar
35. Wyithe, J.S.B., Loeb, A.: Astrophys. J. 586, 693 (2003)Google Scholar
36. Wyithe, J.S.B., Loeb, A.: Astrophys. J. Lett. 588, L69 (2003)Google Scholar