Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:24:17.308Z Has data issue: false hasContentIssue false

High-Mass X-Ray Binaries and OB Runaway Stars

Published online by Cambridge University Press:  22 February 2018

L. Kaper
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (lexk@science.uva.nl)
A. Van der Meer
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (lexk@science.uva.nl)
A.H. Tijani
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (lexk@science.uva.nl)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-mass X-ray binaries (HMXBs) represent an important phase in the evolution of massive binary systems and provide fundamental information on the properties of the OB-star primaries and their compact secondaries (neutron star, black hole). Recent observations indicate that the neutron stars in some of these systems (Vela X-1, 4U 1700-37) are more massive than the canonical mass of 1.35 M. These observations have important consequences for the equation of state at supranuclear densities and the formation mechanism(s) of neutron stars and black holes: supernovae and gamma-ray bursts. As a consequence of the supernova explosion that produced the compact star in these systems, HMXBs have high space velocities and thus are runaways. Alternatively, OB-runaway stars can be ejected from a cluster through dynamical interactions. Observations obtained with the Hipparcos satellite indicate that both scenarios are at work.

Resumen

Resumen

Las binarias masivas de rayos X (HMXBs) representan una fase evolutiva importante, y proporcionan información sobre las propiedades de las primarias OB y de las secundarias compactas (estrellas de neutrones, agujeros negros). Observaciones recientes indican que las estrellas de neutrones en algunos sistemas (Vela X-1, 4U 1700-37) tienen masas mayores que la masa canónica 1.35 M. Estas observaciones tienen consecuencias importantes para la ecuación de estado a densidades supranucleares y para la formación de estrellas de neutrones y agujeros negros (supernovas y estallidos de rayos gama). A consecuencia de la explosión de supernova que produjo el objeto compacto, las HMXBs tienen velocidades espaciales altas, y son desbocadas. Alternativamente, las desbocadas OB pueden ser expelidas de un cúmulo mediante interacciones dinámicas. Las observaciones del Hipparcos indican que ambos mecanismos entran en juego.

Type
Observational Results for Very Young Binaries
Copyright
Copyright © Instituto de Astronomia – Mexico 2004

References

Barziv, O., et al. 2001 A&A 377, 925 Google Scholar
Blaauw, A. 1961 Bull. Astr. Inst. Neth. 15, 265 Google Scholar
Blaauw, A., Morgan, W.W. 1954 ApJ 119, 625 CrossRefGoogle Scholar
Boersma, J. 1961 Bull. Astr. Inst. Neth. 15, 291 Google Scholar
Brown, G.E., Bethe, H.A. 1994 ApJ 423, 659 CrossRefGoogle Scholar
Chevalier, C., Ilovaisky, S.A. 1998 A&A 330, 201 Google Scholar
Clark, J.S., et al. 2002 A&A 392, 909 Google Scholar
Conti, P.S. 1978 A&A 63, 225 Google Scholar
De Donder, E., Vanbeveren, D., Van Bever, J. 1997 A&A 318, 812 Google Scholar
Eggleton, P. 1983 ApJ 268, 368 CrossRefGoogle Scholar
Galama, T.J., et al. 1998 Nat 395, 670 CrossRefGoogle Scholar
Gualandris, A., et al. 2003 MNRAS, submittedGoogle Scholar
Hoogerwerf, R., de Bruijne, J.H.J., de Zeeuw, P.T. 2000 ApJ 544, L133 CrossRefGoogle Scholar
Iwamoto, K., et al. 1998 Nat 395, 672 CrossRefGoogle Scholar
Kaper, L. 2001, in Proc. “Influence of binaries on stellar population studies”, Ed. Vanbeveren, , Kluwer Acad.Pub., p. 125 CrossRefGoogle Scholar
Kaper, L., Comerón, F., Barziv, O. 1999, in Proc. “WolfRayet Phenomena in Massive Stars and Starburst Galaxies”, IAU Symp. 193, Eds. Van der, Hucht, Koenigsberger, Eenens, p. 316CrossRefGoogle Scholar
Kaper, L., et al. 1997 ApJ 475, L37 CrossRefGoogle Scholar
Langer, N., Wellstein, S., Petrovic, J. 2003, in Proc. IAU Symp. 212, Eds. van der, Hucht, Herrero, A., Esteban, C., p. 275CrossRefGoogle Scholar
Liu, Q.Z., Van Paradijs, J., Van den Heuvel, E.P.J. 2000 A&AS 147, 25 Google Scholar
Portegies Zwart, S.F. 2000 ApJ 544, 437 CrossRefGoogle Scholar
Poveda, A., Ruiz, J., Allen, C. 1967 Bol. Obs. Tonantzintla y Tacubaya 4, 860 Google Scholar
Quaintrell, H., et al. 2003 A&A 401, 313 Google Scholar
Rappaport, S.A., Joss, P.C. 1983, in Accretion-driven stellar X-ray sources, Eds. Lewin, , Van den, Heuvel, Cambridge Univ. Press, p. 1 Google Scholar
Stone, R.C. 1979 ApJ 232, 520 CrossRefGoogle Scholar
Thorsett, S.E., Chakrabarty, D. 1999 ApJ 512, 288 CrossRefGoogle Scholar
Van den Heuvel, E.P.J., Heise, J. 1972 Nat 239, 67 Google Scholar
Van den Heuvel, E.P.J., et al. 2001 A&A 364, 563 Google Scholar
Van Rensbergen, W., Vanbeveren, D., De Loore, C. 1996 A&A 305, 825 Google Scholar