Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:32:58.842Z Has data issue: false hasContentIssue false

The Hertzsprung Multiple Exposure Technique and its Application to 61 Cygni

Published online by Cambridge University Press:  12 April 2016

F. J. Josties*
Affiliation:
U.S. Naval Observatory, Washington, D.C.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

E. Hertzsprung developed the multiple exposure technique for observing double stars photographically around 1914 at Potsdam (Hertzsprung, 1920). The technique consists in taking one or more rows of 17 to 35 exposures of a small field which normally includes only the double star itself. The total number of exposures on a plate can vary from 17 to 140, depending primarily on the separation of the double star and the anticipated systematic effects in the observational system. An important feature of the technique is the use of objective gratings to substantially reduce the problem of magnitude error. The large number of exposures serve to reduce the random error, while the objective gratings, together with other innovations introduced by Hertzsprung, help to minimize the systematic errors. In this way Hertzsprung provided us with an observational technique of considerably higher accuracy than the traditional visual micrometer work.

Type
Research Article
Copyright
Copyright © Lowell Observatory 1983

References

Deich, A.N. (1960). Izv. Glav. Ast. Obs. Pulkove No. 166 (22, No. 1), 138.Google Scholar
Deich, A.N. (1978). Sov. Ast. Lett. 4 (1).Google Scholar
Deich, A.N. and Orlova, O.N. (1977). Sov. Ast. 21, 182.Google Scholar
Fletcher, A. (1931). Mon. Not. R. Astron. Soc. 92, 119 and 121.CrossRefGoogle Scholar
Franz, O.G., Gossner, J.L., Josties, F.J., Lindenblad, I.W., Mikesell, A.H., Mintz, B.F., and Riddle, R.K. (1963). Publ. U.S. Naval Obs. 18, Part 1 (DSI).Google Scholar
Hertzsprung, E. (1920). Publ. Ast. Obs. Potsdam 24, No. 75.Google Scholar
Jeffers, H.M. (1951). Lick Obs. Bull. 19, 61 (No. 524).Google Scholar
Josties, F.J., Dahn, C.C., Kallarakal, V.V., Miranian, M., Douglass, G.G., Christy, J.W., Behall, A.L., and Harrington, R.S. (1974). Publ. U.S. Naval Obs. 22, Part 6 (DS III).Google Scholar
Josties, F.J., Kallarakal, V.V., Douglass, G.G., and Christy, J.W. (1978). Publ. U.S. Naval OBS. 24, Part 5 (DS IV).Google Scholar
Kallarakal, V.V., Lindenblad, I.W., Josties, F.J., Riddle, R.K., Miranian, M., Mintz, B.F., and Klugh, A.P. (1969). Publ, U.S. Naval Obs. 18, Part 7. (DS II)Google Scholar
Strand, K. Aa. (1937). Ann. Leiden Obs. 18, Part 2.Google Scholar
Strand, K. Aa. (1943). Publ. Ast. Soc. Pacific 55, 29.Google Scholar
Strand, K. Aa. (1946). Astron. J. 52, 1.Google Scholar
Strand, K. Aa. (1954). Ann. Dearborn Obs. 7, Part 1.Google Scholar
Strand, K. Aa. (1957). Ann. Dearborn Obs. 7, Part 2.Google Scholar
Strand, K. Aa. (1957). Astron. J. 62, 35.Google Scholar
van de Kamp, P. (1973). Astron. J. 78, 1099.CrossRefGoogle Scholar