Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T23:09:03.948Z Has data issue: false hasContentIssue false

The Early Evolution of Supernova Remnants

Published online by Cambridge University Press:  12 April 2016

R.A. Chevalier*
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, VA, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The density distribution of the supernova ejecta and that of the surrounding medium are the most important parameters for the early evolution of supernova remnants. The distribution of the ejecta depends on the detailed hydrodynamics of the explosion, but the outer parts of a supernova can probably be represented by a steep power law density distribution with radius. Self-similar solutions are especially useful for modeling the interaction of a supernova with its surrounding. The supernova first interacts with mass loss from the progenitor star. Evidence for circumstellar interaction is present in a number of extragalactic supernovae, including SN1987a. The explosions of massive stars probably interact with circumstellar gas for a considerable time while Type Ia supernovae interact more directly with the interstellar medium. X-ray spectroscopy is a good diagnostic for the physical conditions in young supernova remnants and for the composition of the supernova gas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Arnett, W.D. 1987, preprint.Google Scholar
Ashworth, W.B. 1980, J. Hist. Astr., 11, 1.Google Scholar
Axelrod, T.S. 1980, Ph.D. thesis, University of California, Santa Cruz.Google Scholar
Bandiera, R. 1987, Ap. J., in press.Google Scholar
Bartel, N. 1986, Highlights of Astr., 7, 655.Google Scholar
Bartel, N., Rogers, A.E.E., Shapiro, I.I., Gorenstein, M.V., Gwinn, C.R., Marcaide, J.M., and Weiler, K.W. 1985, Nature, 318, 25 CrossRefGoogle Scholar
Bartel, N., Rupen, M. and Shapiro, I.I. 1987, IAU Circ. 4292.Google Scholar
Becker, R.H. and Helfand, D.J. 1987, these proceedings.Google Scholar
Bedogni, R. and d’Ercole, A. 1987, Astr. Ap., submitted.Google Scholar
Begelman, M.C. and Sarazin, C.L. 1986, Ap. J. (Letters), 302, 59.Google Scholar
Blaauw, A. 1985, in Birth and Evolution of Massive Stars and Stellar Groups, Boland, W. and van Woerden, H., eds. (Dordrecht: Reidel), p. 211.CrossRefGoogle Scholar
Branch, D., Doggett, J.B., Nomoto, K., and Thielemann, F.K. 1985, Ap. J., 294, 619 CrossRefGoogle Scholar
Canizares, C.R., Kriss, G.A., and Feigelson, E.D. 1982, Ap. J. (Letters), 253, L17.Google Scholar
Chevalier, R.A. 1981, Ap. J., 246, 267.Google Scholar
Chevalier, R.A. 1982, Ap. J., 258, 790.Google Scholar
Chevalier, R.A. 1984a, Ann. N.Y. Acad. Sci., 422, 215.Google Scholar
Chevalier, R.A. 1984b, Ap. J. (Letters), 285, L63.Google Scholar
Chevalier, R.A. 1986, Highlights of Astr., 7, 599.Google Scholar
Chevalier, R.A. 1987, Nature, submitted.Google Scholar
Chevalier, R.A. and Fransson, C. 1987, Nature, in press.Google Scholar
Chevalier, R.A. and Jones, E.M. 1987, in preparation.Google Scholar
Chevalier, R.A. and Kirshner, R.P. 1979, Ap. J., 233, 154.CrossRefGoogle Scholar
Cox, D.P. and Edgar, R.J. 1983, Ap. J., 265, 443.CrossRefGoogle Scholar
Danziger, I.J. and Gorenstein, P. eds. 1983, IAU Symposium 101, Supernova Remnants and their X-Ray Emission (Dordrecht: Reidel).Google Scholar
Dickel, J.R. and Jones, E.M. 1985, Ap. J., 288, 707 CrossRefGoogle Scholar
Dwek, E. 1983, Ap. J., 274, 175.Google Scholar
Ensman, L. and Woosley, S.E. 1987, in preparation.Google Scholar
Fabian, A.C., Brinkmann, W., and Stewart, G.C. 1983, in IAU Symposium 101, Supernova Remnants and their X-Ray Emission, Danziger, I.J. and Gorenstein, P., eds. (Dordrecht: Reidel), p. 83.Google Scholar
Fesen, R.A., Becker, R.H., and Blair, W.P. 1987, Ap. J., 313, 378 Google Scholar
Fesen, R.A., Wu, C.-C., Leventhal, M., and Hamilton, A.J.S. 1987, preprint.Google Scholar
Filippenko, A.V. and Sargent, W.L.W. 1986, A. J., 91, 691.Google Scholar
Fransson, C., et al. 1984, Astr. Ap., 132, 1.Google Scholar
Fransson, C.. 1986a, Highlights of Astr., 7, 611.Google Scholar
Fransson, C.. 1986b, in Radiation Hydrodynamics in Stars and Compact Objects, Mihalas, D. and Winkler, K.H.A., eds. (Berlin: Springer), p. 141.CrossRefGoogle Scholar
Gaskell, C.M., Cappellaro, E., Dinerstein, H.L., Garnett, D.R., Harkness, R.P. and Wheeler, J.C. 1986, Ap. J. (Letters), 306, 77.Google Scholar
Gronenschild, E.H.B.M. and Mewe, R. 1982, Astr. Ap. Suppl., 48, 305 Google Scholar
Hamilton, A.J.S. 1985, Ap. J., 291, 523.CrossRefGoogle Scholar
Hamilton, A.J.S. and Sarazin, C.L. 1984a, Ap. J., 281, 682 CrossRefGoogle Scholar
Hamilton, A.J.S. and Sarazin, C.L. 1984b, Ap. J., 284, 601 Google Scholar
Hamilton, A.J.S. and Sarazin, C.L. 1984c, Ap. J., 287, 282 Google Scholar
Hamilton, A.J.S., Sarazin, C.L., and Chevalier, R.A. 1983, Ap. J. Suppl., 51, 115 CrossRefGoogle Scholar
Hamilton, A.J.S., Sarazin, C.L., and Symkowiak, A.E. 1986a, Ap. J. 300, 698.Google Scholar
Hamilton, A.J.S., Sarazin, C.L., and Symkowiak, A.E. 1986b, Ap. J., 300, 713.Google Scholar
Hughes, J.P. and Helfand, D.J. 1985, Ap. J., 291, 544 Google Scholar
Itoh, H. 1984, Ap. J., 285, 601.Google Scholar
Itoh, H., and Fabian, A.C. 1984, M.N.R.A.S., 208, 645 Google Scholar
Jones, E.M. and Smith, B.W. 1983, in IAU Symposium 101, Supernova Remnants and their X-Ray Emission, Danziger, I.J. and Gorenstein, P., eds. (Dordrecht: Reidel), p. 83.CrossRefGoogle Scholar
Kirshner, R., Nassiopoulas, G.E., Sonneborn, G., and Crenshaw, D.M. 1987, Ap. J., in press.Google Scholar
Kirshner, R.P. and Oke, J.B. 1975, Ap. J., 200, 574 Google Scholar
Kirshner, R.P., Winkler, P.F. and Chevalier, R.A. 1987, Ap. J. (Letters), 315, L135.CrossRefGoogle Scholar
Korobeinikov, B.P. 1956, J. Acad. Sci. Soviet Union, 109, 271.Google Scholar
Lunqvist, P. and Fransson, C. 1987, Astr. Ap., in press.Google Scholar
Muller, E. and Arnett, W.D. 1986, Ap. J., 307, 619.Google Scholar
Nadyozhin, D.K. 1985, Ap. and Sp. Sci., 112, 225.CrossRefGoogle Scholar
Nomoto, K., Thielemann, F.-K., and Yokoi, K. 1984, Ap. J., 286, 644.Google Scholar
Nugent, J.J., Pravdo, S.H., Garmire, G.P., Becker, R.H., Tuohy, I.R., and Winkler, P.F. 1984, Ap. J., 284, 612 Google Scholar
Panagia, N., Sramek, R.A., and Weiler, K.W. 1986, Ap. J., (Letters), 300, L55.Google Scholar
Phillips, M.M. et al. 1987, preprint.Google Scholar
Raizer, Yu.P. 1964, Zh. Prikl. Mat. Tekh. Fiz., No. 4, 49 Google Scholar
Rupen, M.P., van Gorkom, J.H., Knapp, G.R., Gunn, J.E., and Schneider, D.P. 1987, preprint.Google Scholar
Sakurai, A. 1960, Comm. Pure Appl. Math., 13, 353.Google Scholar
Schaeffer, R., Casse, M., and Cahen, S. 1987, Ap. J. (Letters), 316, 31.Google Scholar
Sedov, L. 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, New York.Google Scholar
Solinger, A., Rappaport, S., and Buff, J. 1975, Ap. J., 201, 381 Google Scholar
Sramek, R.A., Panagia, N., and Weiler, K.W. 1984, Ap. J. (Letters), 285, L59.Google Scholar
Sutherland, P.G. and Wheeler, J.C. 1984, Ap. J., 280, 282 Google Scholar
Turtle, A.J. et al. 1987, Nature, 327, 38.CrossRefGoogle Scholar
van den Bergh, S. and Kamper, K.W. 1977, Ap. J., 218, 617.Google Scholar
Weiler, K.W., Sramek, R.A., Panagia, N., van derHulst, J.M., and Salvati, M. 1986, Ap. J. (Letters), 301, 790 Google Scholar
Wheeler, J.C. and Levreault, R. 1985, Ap. J., 294, 17.Google Scholar
Woosley, S.E., Pinto, P.A., and Ensman, L. 1987, Ap. J., in press.Google Scholar
Wu, C.-C., Leventhal, M., Sarazin, C.L., and Gull, T.R. 1983, Ap. J. (Letters), 269, L5.CrossRefGoogle Scholar