Skip to main content Accessibility help

Transmission pathways of multidrug-resistant organisms in the hospital setting: a scoping review

  • Natalia Blanco (a1), Lyndsay M. O’Hara (a1) and Anthony D. Harris (a1)



Prevalence of multidrug-resistant microorganisms (MDROs) continues to increase, while infection control gaps in healthcare settings facilitate their transmission between patients. In this setting, 5 distinct yet interlinked pathways are responsible for transmission. The complete transmission process is still not well understood. Designing and conducting a single research study capable of investigating all 5 complex and multifaceted pathways of hospital transmission would be costly and logistically burdensome. Therefore, this scoping review aims to synthesize the highest-quality published literature describing each of the 5 individual potential transmission pathways of MDROs in the healthcare setting and their overall contribution to patient-to-patient transmission.


In 3 databases, we performed 2 separate systematic searches for original research published during the last decade. The first search focused on MDRO transmission via the HCW or the environment to identify publications studying 5 specific transmission pathways: (1) patient to HCW, (2) patient to environment, (3) HCW to patient, (4) environment to patient, and (5) environment to HCW. The second search focused on overall patient-to-patient transmission regardless of the transmission pathway. Both searches were limited to transmission of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, multidrug-resistant A. baumannii, and carbapenem-resistant Enterobacteriaceae. After abstract screening of 5,026 manuscripts, researchers independently reviewed and rated the remaining papers using objective predefined criteria to identify the highest quality and most influential manuscripts.


High-quality manuscripts were identified for all 5 routes of transmission. Findings from these studies were consistent for all pathways; however, results describing the routes from the environment/HCW to a noncolonized patient were more limited and variable. Additionally, most research focused on MRSA, instead of other MDROs. The second search yielded 10 manuscripts (8 cohort studies) that demonstrated the overall contribution of patient-to-patient transmission in hospitals regardless of the transmission route. For MRSA, the reported cross-transmission was as high as 40%.


This scoping review brings together evidence supporting all 5 possible transmission pathways and illustrates the complex nature of patient-to-patient transmission of MDROs in hospitals. Our findings also confirm that transmission of MDROs in hospitals occurs frequently, suggesting that ongoing efforts are necessary to strengthen infection prevention and control to prevent the spread of MDROs.


Corresponding author

Author for correspondence: Anthony D. Harris, Email:


Hide All
1.Blanco, N, Perencevich, E, Li, SS, et al. Effect of meteorological factors and geographic location on methicillin-resistant staphylococcus aureus and vancomycin-resistant Enterococci colonization in the US. PLoS One 2017;12:e0178254.
2.Corbella, X, Pujol, M, Ayats, J, et al. Relevance of digestive tract colonization in the epidemiology of nosocomial infections due to multiresistant Acinetobacter baumannii. Clin Infect Dis 1996;23:329334.
3.Bratu, S, Landman, D, Haag, R, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165:14301435.
4.Harris, AD, Pineles, L, Belton, B, et al. Universal glove and gown use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA 2013;310:15711580.
5.Causes of antimicrobial (drug) resistance. National Institutes of Allergy and Infectious Diseases website. Published December 21, 2011. Accessed September 21, 2018.
6.Visalachy, S, Palraj, KK, Kopula, SS, Sekar, U. Carriage of multidrug resistant bacteria on frequently contacted surfaces and hands of health care workers. J Clin Diagn Res 2016;10:DC18DC20.
7.Eveillard, M, Martin, Y, Hidri, N, Boussougant, Y, Joly-Guillou, ML. Carriage of methicillin-resistant Staphylococcus aureus among hospital employees: prevalence, duration, and transmission to households. Infect Control Hosp Epidemiol 2004;25:114120.
8.Morgan, DJ, Rogawski, E, Thom, KA, et al. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit Care Med 2012;40:10451051.
9.Morgan, DJ, Liang, SY, Smith, CL, et al. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol 2010;31:716721.
10.Duckro, AN, Blom, DW, Lyle, EA, Weinstein, RA, Hayden, MK. Transfer of vancomycin-resistant Enterococci via health care worker hands. Arch Intern Med 2005;165:302307.
11.Munoz-Price, LS, Namias, N, Cleary, T, et al. Acinetobacter baumannii: association between environmental contamination of patient rooms and occupant status. Infect Control Hosp Epidemiol 2013;34:517520.
12.Thom, KA, Johnson, JK, Lee, MS, Harris, AD. Environmental contamination because of multidrug-resistant Acinetobacter baumannii surrounding colonized or infected patients. Am J Infect Control 2011;39:711715.
13.Mitchell, A, Spencer, M, Edmiston, C Jr. Role of healthcare apparel and other healthcare textiles in the transmission of pathogens: a review of the literature. J Hosp Infect 2015;90:285292.
14.Pham, MT, Rajić, A, Greig, JD, Sargeant, JM, Papadopoulos, A, McEwen, SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods 2014;5:371385.
15.Colquhoun, HL, Levac, D, O’Brien, KK, et al. Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol 2014;67:12911294.
16.Hayden, MK, Blom, DW, Lyle, EA, Moore, CG, Weinstein, RA. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant Enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol 2008;29:149154.
17.Schweizer, M, Ward, M, Cobb, S, et al. The epidemiology of methicillin-resistant Staphylococcus aureus on a burn trauma unit. Infect Control Hosp Epidemiol 2012;33:11181125.
18.Yakupogullari, Y, Otlu, B, Ersoy, Y, et al. Is airborne transmission of Acinetobacter baumannii possible: a prospective molecular epidemiologic study in a tertiary care hospital. Am J Infect Control 2016;44:15951599.
19.Wilson, AP, Hayman, S, Whitehouse, T, et al. Importance of the environment for patient acquisition of methicillin-resistant staphylococcus aureus in the intensive care unit: a baseline study. Crit Care Med 2007;35:22752279.
20.Ben-David, D, Mermel, LA, Parenteau, S. Methicillin-resistant Staphylococcus aureus transmission: the possible importance of unrecognized health care worker carriage. Am J Infect Control 2008;36:9397.
21.Loftus, RW, Koff, MD, Brown, JR, et al. The epidemiology of Staphylococcus aureus transmission in the anesthesia work area. Anesth Analg 2015;120:807818.
22.Creamer, E, Shore, AC, Rossney, AS, et al. Transmission of endemic ST22-MRSA-IV on four acute hospital wards investigated using a combination of spa, dru and pulsed-field gel electrophoresis typing. Eur J Clin Microbiol Infect Dis 2012;31:31513161.
23.Barbolla, RE, Centron, D, Maimone, S, et al. Molecular epidemiology of Acinetobacter baumannii spread in an adult intensive care unit under an endemic setting. Am J Infect Control 2008;36:444452.
24.Danzmann, L, Gastmeier, P, Schwab, F, Vonberg, RP. Health care workers causing large nosocomial outbreaks: a systematic review. BMC Infect Dis 2013;13:98.
25.Moore, C, Dhaliwal, J, Tong, A, et al. Risk factors for methicillin-resistant Staphylococcus aureus (MRSA) acquisition in roommate contacts of patients colonized or infected with MRSA in an acute-care hospital. Infect Control Hosp Epidemiol 2008;29:600606.
26.Bloemendaal, AL, Fluit, AC, Jansen, WM, et al. Acquisition and cross-transmission of Staphylococcus aureus in European intensive care units. Infect Control Hosp Epidemiol 2009;30:117124.
27.Johnson, JK, Smith, G, Lee, MS, et al. The role of patient-to-patient transmission in the acquisition of imipenem-resistant pseudomonas aeruginosa colonization in the intensive care unit. J Infect Dis 2009;200:900905.
28.Khandavilli, S, Wilson, P, Cookson, B, Cepeda, J, Bellingan, G, Brown, J. Utility of spa typing for investigating the local epidemiology of MRSA on a UK intensive care ward. J Hosp Infect 2009;71:2935.
29.El-Ageery, SM, Abo-Shadi, MA, Elgendy, AM, Alghaithy, AA, Kandeel, AY. The role of health care workers and environment on transmission of methicillin–resistant Staphylococcus aureus among patients in a medical intensive care unit in a Saudi hospital. J Pure Appl Microbiol 2011;5:18.
30.Irfan, S, Turton, JF, Mehraj, J, et al. Molecular and epidemiological characterisation of clinical isolates of carbapenem-resistant Acinetobacter baumannii from public and private sector intensive care units in Karachi, Pakistan. J Hosp Infect 2011;78:143148.
31.Price, JR, Golubchik, T, Cole, K, et al. Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clin Infect Dis 2014;58:609618.
32.Long, SW, Beres, SB, Olsen, RJ, Musser, JM. Absence of patient-to-patient intrahospital transmission of Staphylococcus aureus as determined by whole-genome sequencing. MBio 2014;5:e0169214.
33.Amissah, NA, Chlebowicz, MA, Ablordey, A, et al. Molecular characterization of staphylococcus aureus isolates transmitted between patients with Buruli ulcer. PLoS Negl Trop Dis 2015;9:e0004049.
34.Moore, G, Cookson, B, Gordon, NC, et al. Whole-genome sequencing in hierarchy with pulsed-field gel electrophoresis: the utility of this approach to establish possible sources of MRSA cross-transmission. J Hosp Infect 2015;90:3845.
35.Huang, SS, Datta, R, Platt, R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med 2006;166:19451951.
36.Mitchell, B, Digney, W, Ferguson, J. Prior room occupancy increases risk of methicillin-resistant Staphylococcus aureus acquisition. Healthc Infect 2014;19:135140.
37.Barnes, SL, Morgan, DJ, Harris, AD, Carling, PC, Thom, KA. Preventing the transmission of multidrug-resistant organisms: modeling the relative importance of hand hygiene and environmental cleaning interventions. Infect Control Hosp Epidemiol 2014;35:11561162.
38.Alhmidi, H, John, A, Mana, TC, et al. Evaluation of viral surrogate markers for study of pathogen dissemination during simulations of patient care. Open Forum Infect Dis 2017;4:ofx128.
39.Harris, AD, Furuno, JP, Roghmann, MC, et al. Targeted surveillance of methicillin-resistant Staphylococcus aureus and its potential use to guide empiric antibiotic therapy. Antimicrob Agents Chemother 2010;54:31433148.
40.Huang, SS, Platt, R. Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization. Clin Infect Dis 2003;36:281285.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed