Skip to main content Accessibility help
×
Home

Sustained Improvements in Peripheral Venous Catheter Care in Non–Intensive Care Units: A Quasi-Experimental Controlled Study of Education and Feedback

  • Mohamad G. Fakih (a1) (a2), Karen Jones (a2), Janice E. Rey (a2), Dorine Berriel-Cass (a3), Tatyana Kalinicheva (a2), Susanna Szpunar (a4) and Louis D. Saravolatz (a1)...

Abstract

Background and Objectives.

Peripheral venous catheters (PVCs) can be associated with serious infectious complications. We evaluated the effect of education and feedback on process measures to improve PVC care and infectious complications.

Design.

Quasi-experimental controlled crossover study with sampling before and after education.

Setting.

An 804-bed tertiary care teaching hospital.

Participants.

Nurses and patients in 10 non-intensive care units.

Methods.

We implemented a process to improve PVC care in 10 non-intensive care units. The 4 periods (each 3 months in duration) included a preintervention period and a staggered educational intervention among nurses. During intervention period 1, 5 units participated in the intervention (group A), and 5 units served as a control group (group B). Group B underwent the intervention during intervention period 2, and both groups A and B received feedback on performance during intervention period 3. Process measures were evaluated twice monthly, and feedback was given to nurses directly and to the unit manager on a monthly basis.

Results.

During the preintervention period, there were no significant differences between groups A and B. Of 4,904 intravascular catheters evaluated, 4,434 (90.4%) were peripheral. By the end of the study, there were significant improvements in processes, compared with the preintervention period, including accurate documentation of dressing (from 442 cases [38%] to 718 cases [59%]; P<.0001), catheter dressing being intact (from 968 cases [88.5%] to 1,024 cases [95.2%]; P<.0001), and correct demonstration of scrubbing the hub before infusion (from 161 demonstrations [54%] to 316 demonstrations [95%]; P <.0001). There was a significant reduction in PVC-associated bloodstream infection, from 2.2 cases per 10,000 patient-days during the preintervention period (5 cases) to 0.44 cases per 10,000 patient days during the 3 intervention periods (3 cases; P = .016).

Conclusions.

Education and real-time feedback to nurses increases and sustains compliance with processes to reduce the risk of infection from PVCs.

Copyright

Corresponding author

Wayne State University School of Medicine, Medical Director, Infection Prevention and Control, St. John Hospital and Medical Center, 19251 Mack Avenue, Suite 190, Grosse Pointe Woods, MI 48236 (mohamad.fakih@stjohn.org)

References

Hide All
1.O'Grady, NP, Alexander, M, Burns, LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011;52:e162e193.
2.Kallen, AJ, Patel, PR, O'Grady, NP. Preventing catheter-related bloodstream infections outside the intensive care unit: expanding prevention to new settings. Clin Infect Dis 2010;51:335341.
3.Warren, DK, Cosgrove, SE, Diekema, DJ, et al. A multicenter intervention to prevent catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 2006;27:662669.
4.Pronovost, P, Needham, D, Berenholtz, S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006;355:27252732.
5.Warren, DK, Zack, JE, Mayfield, JL, et al. The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 2004;126:16121618.
6.Voges, KA, Webb, D, Fish, LL, Kressel, AB. One-day point-prevalence survey of central, arterial, and peripheral line use in adult inpatients. Infect Control Hosp Epidemiol 2009;30:606608.
7.Dudeck, MA, Horan, TC, Peterson, KD, et al. National Healthcare Safety Network (NHSN) report, data summary for 2009, device-associated module. Am J Infect Control 2011;39:349367.
8.Frigerio, S, Di Giulio, P, Gregori, D, et al. Managing peripheral venous catheters: an investigation on the efficacy of a strategy for the implementation of evidence-based guidelines. J Eval Clin Pract doi 10.1111/j.l365-2753.2010.01590.x. Published November 30, 2010.
9.Ahlqvist, M, Berglund, B, Nordstrom, G, Klang, B, Wiren, M, Johansson, E. A new reliable tool (PVC assess) for assessment of peripheral venous catheters. J Eval Clin Pract 2010;16: 11081115.
10.Morse, L, McDonald, M. Failure of a poster-based educational programme to improve compliance with peripheral venous catheter care in a tertiary hospital: a clinical audit. J Hosp Infect 2009;72:221226.
11.Lee, WL, Chen, HL, Tsai, TY, et al. Risk factors for peripheral intravenous catheter infection in hospitalized patients: a prospective study of 3165 patients. Am J Infect Control 2009;37: 683686.
12.Trinh, TT, Chan, PA, Edwards, O, et al. Peripheral venous catheter-related Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol 2011;32:579583.
13.Pujol, M, Hornero, A, Saballs, M, et al. Clinical epidemiology and outcomes of peripheral venous catheter-related bloodstream infections at a university-affiliated hospital. J Hosp Infect 2007; 67(1):2229.
14.Centers for Disease Control and Prevention. Central line-associated bloodstream infection (CLABSI) event: guidelines and procedures for monitoring CLABSI. http://www.cdc.gov/nhsn/PDFs/pscManual/4PSC_CLABScurrent.pdf. Accessed July 18, 2011.
15.Infusion Nursing Society. Infusion nursing standards of practice. J Infus Nurs 2006;29(1 suppl):S1S92.
16.Klevens, RM, Tokars, JI, Edwards, J, Horan, T. Sampling for collection of central line-day denominators in surveillance of healthcare-associated bloodstream infections. Infect Control Hosp Epidemiol 2006;27(4):338342.
17.Trick, WE, Vernon, MO, Welbel, SF, Wisniewski, MF, Jernigan, JA, Weinstein, RA. Unnecessary use of central venous catheters: the need to look outside the intensive care unit. Infect Control Hosp Epidemiol 2004;25(3):266268.
18.Al Raiy, B, Fakih, MG, Bryan-Nomides, N, et al. Peripherally inserted central venous catheters in the acute care setting: a safe alternative to high-risk short-term central venous catheters. Am J Infect Control 2010;38(2):149153.
19.Tagalakis, V, Kahn, SR, Libman, M, Blostein, M. The epidemiology of peripheral vein infusion thrombophlebitis: a critical review. Am J Med 2002;113(2):146151.
20.Webster, J, Osborne, S, Rickard, C, Hall, J. Clinically-indicated replacement versus routine replacement of peripheral venous catheters. Cochrane Database Syst Rev 2010(3):CD007798.
21.Malach, T, Jerassy, Z, Rudensky, B, et al. Prospective surveillance of phlebitis associated with peripheral intravenous catheters. Am J Infect Control 2006;34(5):308312.
22.Boyd, S, Aggarwal, I, Davey, P, Logan, M, Nathwani, D. Peripheral intravenous catheters: the road to quality improvement and safer patient care. J Hosp Infect 2011;77(1):3741.
23.Cherry, MG, Brown, JM, Neal, T, Ben Shaw, N. What features of educational interventions lead to competence in aseptic insertion and maintenance of CV catheters in acute care? BEME Guide No. 15. Med Teach 2010;32(3):198218.
24.Krein, SL, Damschroder, LJ, Kowalski, CP, Forman, J, Hofer, TP, Saint, S. The influence of organizational context on quality improvement and patient safety efforts in infection prevention: a multi-center qualitative study. Soc Sci Med 2010;71(9): 16921701.

Related content

Powered by UNSILO

Sustained Improvements in Peripheral Venous Catheter Care in Non–Intensive Care Units: A Quasi-Experimental Controlled Study of Education and Feedback

  • Mohamad G. Fakih (a1) (a2), Karen Jones (a2), Janice E. Rey (a2), Dorine Berriel-Cass (a3), Tatyana Kalinicheva (a2), Susanna Szpunar (a4) and Louis D. Saravolatz (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.