Skip to main content Accessibility help

Surveillance of Endoscopes: Comparison of Different Sampling Techniques

  • Lien Cattoir (a1), Thomas Vanzieleghem (a2), Lisa Florin (a1), Tania Helleputte (a3), Martine De Vos (a3), Bruno Verhasselt (a1) (a4), Jerina Boelens (a1) (a4) (a5) and Isabel Leroux-Roels (a1) (a4) (a5)...



To compare different techniques of endoscope sampling to assess residual bacterial contamination.


Diagnostic study.


The endoscopy unit of an 1,100-bed university hospital performing ~13,000 endoscopic procedures annually.


In total, 4 sampling techniques, combining flushing fluid with or without a commercial endoscope brush, were compared in an endoscope model. Based on these results, sterile physiological saline flushing with or without PULL THRU brush was selected for evaluation on 40 flexible endoscopes by adenosine triphosphate (ATP) measurement and bacterial culture. Acceptance criteria from the French National guideline (<25 colony-forming units [CFU] per endoscope and absence of indicator microorganisms) were used as part of the evaluation.


On biofilm-coated PTFE tubes, physiological saline in combination with a PULL THRU brush generated higher mean ATP values (2,579 relative light units [RLU]) compared with saline alone (1,436 RLU; P=.047). In the endoscope samples, culture yield using saline plus the PULL THRU (mean, 43 CFU; range, 1–400 CFU) was significantly higher than that of saline alone (mean, 17 CFU; range, 0–500 CFU; P<.001). In samples obtained using the saline+PULL THRU brush method, ATP values of samples classified as unacceptable were significantly higher than those of samples classified as acceptable (P=.001).


Physiological saline flushing combined with PULL THRU brush to sample endoscopes generated higher ATP values and increased the yield of microbial surveillance culture. Consequently, the acceptance rate of endoscopes based on a defined CFU limit was significantly lower when the saline+PULL THRU method was used instead of saline alone.

Infect Control Hosp Epidemiol 2017;38:1062–1069

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surveillance of Endoscopes: Comparison of Different Sampling Techniques
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Surveillance of Endoscopes: Comparison of Different Sampling Techniques
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Surveillance of Endoscopes: Comparison of Different Sampling Techniques
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. All rights reserved.

Corresponding author

Address correspondence to Isabel Leroux-Roels, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium (


Hide All
1. Kovaleva, J, Peters, FT, van der Mei, HC, Degener, JE. Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin Microbiol Rev 2013;26:231254.
2. Cowen, AE. The clinical risks of infection associated with endoscopy. Can J Gastroenterol 2001;15:321331.
3. Gillespie, EE, Kotsanas, D, Stuart, RL. Microbiological monitoring of endoscopes: 5-year review. J Gastroenterol Hepatol 2008;23:10691074.
4. Buss, AJ, Been, MH, Borgers, RP, et al. Endoscope disinfection and its pitfalls—requirement for retrograde surveillance cultures. Endoscopy 2008;40:327332.
5. Saliou, P, Le Bars, H, Payan, C, et al. Measures to improve microbial quality surveillance of gastrointestinal endoscopes. Endoscopy 2016;48:704710.
6. Kovaleva, J, Degener, JE, van der Mei, HC. Mimicking disinfection and drying of biofilms in contaminated endoscopes. J Hosp Infect 2010;76:345350.
7. Pajkos, A, Vickery, K, Cossart, Y. Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination? J Hosp Infect 2004;58:224229.
8. Roberts, CG. The role of biofilms in reprocessing medical devices. Am J Infect Control 2013;41:S77S80.
9. Komanduri, S, Abu Dayyeh, BK, Bhat, YM, et al. Technologies for monitoring the quality of endoscope reprocessing. Gastrointest Endosc 2014;80:369373.
10. Aanbevelingen inzake het onderhoud van flexibel warmtegevoelig endoscopisch materiaal en de preventie van infecties, 5 May 2010. Superior Health Council of Belgium website. Published 2010. Accessed January 24, 2017.
11. Stuurgroep flexibele endoscopen reiniging en desinfectie (SFERD). Professional standard handbook cleaning and disinfection flexible endoscopes, version 3.0. Dutch Sterilisation Society website. Published 2014. Accessed January 24, 2017.
12. Comité Technique des Infections Nosocomiales et des Infections Liées aux Soins (CTINILS). Éléments d’assurance qualité en hygiène relatifs au contrôle microbiologique des endoscopes et à la traçabilité en endoscopie. French Ministery of Health and Solidarity website. Published 2007. Accessed January 24, 2017.
13. BSG Guidelines for decontamination of equipment for gastrointestinal endoscopy. British Society of Gastroenterology website. Published 2008. Accessed January 24, 2017.
14. Beilenhoff, U, Neumann, CS, Rey, JF, Biering, H, Blum, R, Schmidt, V, ESGE Guidelines Committee. ESGE-ESGENA guideline for quality assurance in reprocessing: microbiological surveillance testing in endoscopy. Endoscopy 2007;39:175181.
15. Infection control in endoscopy. Gastroenterological Society of Australia website. Published 2010. Accessed January 24, 2017.
16. Manitoba Health. Guidelines for infection prevention and control in endoscopy. The College of Physicians and Surgeons of Manitoba, Canada, website. Published 2000. Accessed January 24, 2017.
17. ASGE Quality Assurance In Endoscopy Committee, Petersen, BT, Chennat, J, et al. Multisociety guideline on reprocessing flexible gastrointestinal endoscopes: 2011. Gastrointest Endosc 2011;73:10751084.
18. Alvarado, CJ, Reichelderfer, M. Association for Professionals in Infection Control (APIC) guideline for infection prevention and control in flexible endoscopy. Am J Infect Control 2000;28:138155.
19. Fushimi, R, Takashina, M, Yoshikawa, H, et al. Comparison of adenosine triphosphate, microbiological load, and residual protein as indicators for assessing the cleanliness of flexible gastrointestinal endoscopes. Am J Infect Control 2013;41:161164.
20. Shin, SP, Kim, WH. Recent update on microbiological monitoring of gastrointestinal endoscopes after high-level disinfection. Clin Endosc 2015;48:369373.
21. Batailler, P, Saviuc, P, Picot-Gueraud, R, Bosson, JL, Mallaret, MR. Usefulness of adenosinetriphosphate bioluminescence assay (ATPmetry) for monitoring the reprocessing of endoscopes. Infect Control Hosp Epidemiol 2015;36:14371443.
22. Charlton, TS. A comparison of the efficacy of lumen-cleaning devices for flexible gastrointestinal endoscopes. Australian Infection Control 2007;12:8190.
23. Ofstead, CL, Wetzler, HP, Heymann, OL, Johnson, EA, Eiland, JE, Shaw, MJ. Longitudinal assessment of reprocessing effectiveness for colonoscopes and gastroscopes: Results of visual inspections, biochemical markers, and microbial cultures. Am J Infect Control 2017;45:e26e33.
24. Aumeran, C, Thibert, E, Chapelle, FA, Hennequin, C, Lesens, O, Traore, O. Assessment on experimental bacterial biofilms and in clinical practice of the efficacy of sampling solutions for microbiological testing of endoscopes. J Clin Microbiol 2012;50:938942.
Type Description Title
Supplementary materials

Cattoir supplementary material
Cattoir supplementary material

 Word (28 KB)
28 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed