Skip to main content Accessibility help
×
Home

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Reply to Eric Schlote regarding “Evaluation of dilute hydrogen peroxide technology for continuous room decontamination of multidrug-resistant organisms”
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Reply to Eric Schlote regarding “Evaluation of dilute hydrogen peroxide technology for continuous room decontamination of multidrug-resistant organisms”
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Reply to Eric Schlote regarding “Evaluation of dilute hydrogen peroxide technology for continuous room decontamination of multidrug-resistant organisms”
        Available formats
        ×
Export citation

To the Editor—We thank Eric Schlote, CEO of Synexis Biodefense Systems, for his letter regarding our article, “Evaluation of dilute hydrogen peroxide technology for continuous room decontamination of multidrug-resistant organisms.”Reference Rutala, Kanamori, Gergen, Sickbert-Bennett, Anderson, Sexton and Weber1 As noted in our paper, hospital room environmental surfaces are frequently contaminated and serve as a source for healthcare MDROs. Contact with these contaminated surfaces may result in hand or glove contamination of healthcare personnel that can be transferred to patients. Development of a validated effective method for continuous room disinfection method would provide an important tool for decreasing surface contamination with MDROs and healthcare-associated pathogens.

We acknowledge that the device we tested may not be the device currently marketed by Synexis Biodefense Systems. However, when we conducted our study, we were told that we were studying the device that would be marketed.

We take exception with Mr Schloteʼs claim that the dilute hydrogen peroxide system marketed by Synexis Biodefense Systems has been validated. Only a single abstract has been published,Reference Herman, Hess and Cerra2 and no-peer reviewed, published studies have validated that use of this device can effectively provide continuous decontamination of the environment (eg, surfaces). Furthermore, the one abstract that has been published has substantial limitations: (1) the study used a before–after study design, a relatively weak epidemiologic method; (2) the study assessed the device for only 7 days after installation; (3) the researchers did not measure the concentration of the hydrogen peroxide in the test rooms; and (4) no statistical evaluation was provided. The authors of this abstract recommended further study. Even if a statistical reduction of surface contamination is demonstrated, this method of continuous room disinfection needs to be validated (1) to decrease healthcare-associated infections (HAIs), (2) to be safe for patients and healthcare personnel, and (3) to be cost-effective.

Although we were unable to perform additional studies due to the lack of laboratory capabilities, we have been in contact with colleagues interested in further studies of this methodology. We made several recommendations to them: (1) install the test device consistent with the manufacturerʼs recommendations; (2) monitor the concentration of hydrogen peroxide at a low concentration produced both at the unit exhaust and at room surfaces; (3) assess relevant healthcare-associated pathogens; (4) use appropriate controls (eg, similar rooms without the test device); (5) monitor microbial reduction quantitatively; (6) monitor compliance with room disinfection (for clinical trials) using a method such as fluorescent dye; (7) perform room cleaning and disinfection per CDC recommendations; and finally (8) assess the impact of HAI rates.

We agree that further studies of self-disinfecting and continuous room disinfection methods are highly important to public health.

Acknowledgments

Financial support

No financial support was provided relevant to this article.

Conflicts of interest

Drs. Rutala and Weber are consultants for Professional Disposables International.

References

1.Rutala, WA, Kanamori, H, Gergen, MF, Sickbert-Bennett, EE, Anderson, DJ, Sexton, DJ, Weber, DJ, CDC Prevention Epicenters Program. Evaluation of dilute hydrogen peroxide technology for continuous room decontamination of multidrug-resistant organisms. Infect Control Hosp Epidemiol 2019;40:14381439.
2.Herman, CK, Hess, J, Cerra, C. Dilute hydrogen peroxide technology for reduction of microbial colonization in the hospital setting. Am J Infect Control 2015;43(6):S25S26.