Skip to main content Accessibility help

Practical methods for effective vancomycin-resistant enterococci (VRE) surveillance: experience in a liver transplant surgical intensive care unit

  • Rebecca Y. Linfield (a1), Shelley Campeau (a2), Patil Injean (a3), Aric Gregson (a1), Fady Kaldas (a1), Zachary Rubin (a1), Tae Kim (a4), Danielle Kunz (a5), Alfred Chan (a4), Delphine J. Lee (a4), Romney M. Humphries (a2) and James A. McKinnell (a1) (a4) (a5)...



We evaluated the utility of vancomycin-resistant Enterococcus (VRE) surveillance by varying 2 parameters: admission versus weekly surveillance and perirectal swabbing versus stool sampling.


Prospective, patient-level surveillance program of incident VRE colonization.


Liver transplant surgical intensive care unit (SICU) of a tertiary-care referral medical center with a high prevalence of VRE.


All patients admitted to the SICU from June to August 2015.


We conducted a point-prevalence estimate followed by admission and weekly surveillance by perirectal swabbing and/or stool sampling. Incident colonization was defined as a negative screen followed by positive surveillance. VRE was detected by culture on Remel Spectra VRE chromogenic agar. Microbiologically-confirmed VRE bloodstream infections (BSIs) were tracked for 2 months. Statistical analyses were calculated using the McNemar test, the Fisher exact test, the t test, and the χ2 test.


In total, 91 patients underwent VRE surveillance testing. The point prevalence of VRE colonization was 60.9%; VRE prevalence on admission was 30.1%. Weekly surveillance identified an additional 7 of 28 patients (25.0%) with incident colonization. VRE BSIs were more common in VRE-colonized patients than in noncolonized patients (8 of 43 vs 2 of 48; P=.028). In a direct comparison, perirectal swabs were more sensitive than stool samples in detecting VRE (64 of 67 vs 56 of 67; P=.023). Compliance with perirectal swabbing was 89% (201 of 226) compared to 56% (127 of 226) for stool collection (P≤0.001).


We recommend weekly VRE surveillance over admission-only screening in high-burden units such as liver transplant SICUs. Perirectal swabs had greater collection compliance and sensitivity than stool samples, making them the preferred methodology. Further work may have implications for antimicrobial stewardship and infection control.


Corresponding author

Author for correspondence: James A. McKinnell, 1124 West Carson Street Torrance, CA 90502. E-mail:


Hide All

Present affiliation: Accelerate Diagnostics, 13 Tucson, Arizona



Hide All
1. Chiang, HY, Perencevich, EN, Nair, R, et al. Incidence and outcomes associated with infections caused by vancomycin-resistant Enterococci in the United States: systematic literature review and meta-analysis. Infect Control Hosp Epidemiol 2017;38:203215.
2. Russell, DL, Flood, A, Zaroda, TE, et al. Outcomes of colonization with MRSA and VRE among liver transplant candidates and recipients. Am J Transplant 2008;8:17371743.
3. Kamboj, M, Chung, D, Seo, SK, et al. The changing epidemiology of vancomycin-resistant Enterococcus (VRE) bacteremia in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Biol Blood Marrow Transplant 2010;16:15761581.
5. Popiel, KY, Miller, MA. Evaluation of vancomycin-resistant enterococci (VRE)-associated morbidity following relaxation of VRE screening and isolation precautions in a tertiary care hospital. Infect Control Hosp Epidemiol 2014;35:818825.
6. Perencevich, EN, Fisman, DN, Lipsitch, M, Harris, AD, Morris, JG Jr, Smith, DL. Projected benefits of active surveillance for vancomycin-resistant enterococci in intensive care units. Clin Infect Dis 2004;38:11081115.
7. Wong, T, Woznow, T, Petrie, M, et al. Postdischarge decontamination of MRSA, VRE, and Clostridium difficile isolation rooms using 2 commercially available automated ultraviolet-C-emitting devices. Am J Infect Control 2016;44:416420.
8. Rakoczy, T, Hendrickson, C, Kline, S, Streifel, A, Guspiel, A, Gross, A. Investigation of vancomycin resistant Enterococcus and extended spectrum beta-lactamase infections in end stage liver disease after endoscopic retrograde cholangiopancreatography. Am J Infect Control 2014;42:S154.
9. Olivier, CN, Blake, RK, Steed, LL, Salgado, CD. Risk of vancomycin-resistant Enterococcus (VRE) bloodstream infection among patients colonized with VRE. Infect Control Hosp Epidemiol 2008;29:404409.
10. Britt, NS, Potter, EM, Patel, N, Steed, ME. Comparison of the effectiveness and safety of linezolid and daptomycin in vancomycin-resistant enterococcal bloodstream infection: a national cohort study of Veterans Affairs patients. Clin Infect Dis 2015;61:871878.
11. McKinnell, JA, Arias, CA. Editorial commentary. Linezolid vs daptomycin for vancomycin-resistant enterococci: the evidence gap between trials and clinical experience. Clin Infect Dis 2015;61:879882.
12. D’Agata, EM, Gautam, S, Green, WK, Tang, YW. High rate of false-negative results of the rectal swab culture method in detection of gastrointestinal colonization with vancomycin-resistant enterococci. Clin Infect Dis 2002;34:167172.
13. McKinnell, JA, Kunz, DF, Moser, SA, et al. Patient-level analysis of incident vancomycin-resistant enterococci colonization and antibiotic days of therapy. Epidemiol Infect 2016;144:17481755.
14. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, M100S. 26th ed. Wayne, PA: CLSI; 2016.
15. Russell, DL, Flood, A, Zaroda, TE, et al. Outcomes of colonization with MRSA and VRE among liver transplant candidates and recipients. Am J Transplant 2008;8:17371743.
16. Huang, HP, Chen, B, Wang, HY, He, M. The efficacy of daily chlorhexidine bathing for preventing healthcare-associated infections in adult intensive care units. Korean J Intern Med 2016;31:11591170.
17. Lautenbach, E, Harris, AD, Perencevich, EN, et al. Test characteristics of perirectal and rectal swab compared to stool sample for detection of fluoroquinolone-resistant Escherichia coli in the gastrointestinal tract. Antimicrob Agents Chemother 2005;49:798800.
18. Kotton, CN, Lankowski, AJ, Hohmann, EL. Comparison of rectal swabs with fecal cultures for detection of Salmonella typhimurium in adult volunteers. Diagn Microbiol Infect Dis 2006;56:123126.
19. Jenkins, SG, Raskoshina, L, Schuetz, AN. Comparison of performance of the novel chromogenic spectra VRE agar to that of bile esculin azide and Campylobacter agars for detection of vancomycin-resistant enterococci in fecal samples. J Clin Microbiol 2011;49:39473949.
20. Kuch, A, Stefaniuk, E, Ozorowski, T, Hryniewicz, W. New selective and differential chromogenic agar medium, chromID VRE, for screening vancomycin-resistant Enterococcus species. J Microbiol Methods 2009;77:124126.
21. Stamper, PD, Shulder, S, Bekalo, P, et al. Evaluation of BBL CHROMagar VanRE for detection of vancomycin-resistant Enterococci in rectal swab specimens. J Clin Microbiol 2010;48:42944297.
22. Taur, Y, Xavier, JB, Lipuma, L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012;55:905914.
23. Donskey, CJ, Deshpande, A. Effect of chlorhexidine bathing in preventing infections and reducing skin burden and environmental contamination: a review of the literature. Am J Infect Control 2016;44:e17e21.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed