Skip to main content Accessibility help

Outbreak of Pseudomonas aeruginosa Infection Associated With Contamination of a Flexible Bronchoscope

  • Carlos A. DiazGranados (a1) (a2), Marolyn Y. Jones (a2), Thiphasone Kongphet-Tran (a2), Nancy White (a2), Mark Shapiro (a3), Yun F. Wang (a4) (a3), Susan M. Ray (a1) (a2) and Henry M. Blumberg (a1) (a2)...



A cluster of patients with respiratory cultures positive for Pseudomonas aeruginosa with a unique antibiogram was observed during June and July 2007 at a 1,000-bed urban teaching hospital in Atlanta, Georgia. These P. aeruginosa isolates were recovered from bronchoscopically obtained specimens.


A cross-sectional study was performed to assess whether the cluster was associated with exposure to a particular bronchoscope (B1); cultures from specimens from the bronchoscopes and the environment were obtained, and the P. aeruginosa isolate type was determined using pulsed-field gel electrophoresis (PFGE). Records of patients exposed to B1 during the cluster period were reviewed.


Twelve patients with a culture positive for P. aeruginosa with the unique susceptibility pattern were identified in June-July 2007. No cases were documented from March 1 through May 31, 2007. Culture specimens obtained from B1 after high-level disinfection revealed P. aeruginosa, prompting removal of B1 from service on July 23, 2007. No cases occurred after that date. Eleven (55%) of 20 patients who were exposed to Bl during the cluster period had a culture positive for P. aeruginosa, compared with 1 (2%) of 53 patients who were exposed to other bronchoscopes (P < .001). PFGE patterns for P. aeruginosa isolates obtained from case patients and from B1 were identical. An engineering evaluation of B1 documented several internal damages. Two (10.5%) of 19 patients exposed to Bl during the cluster period may have developed P. aeruginosa infection following exposure to B1.


An outbreak or pseudo-outbreak of P. aeruginosa infection occurred in association with use of a damaged bronchoscope. Periodic engineering maintenance may be needed to prevent bronchoscope contamination that is resistant to high-level disinfection.


Corresponding author

49 Jesse Hill Jr. Dr., Atlanta, GA 30303 (


Hide All
1.Centers for Disease Control and Prevention. Bronchoscopy-related infections and pseudoinfections—New York, 1996 and 1998. MMWR Morb Mortal Wkly Rep 1999;48:557560.
2.Muscarella, LF. Inconsistencies in endoscope-reprocessing and infection-control guidelines: the importance of endoscope drying. Am J Gastroenterol 2006;101:21472154.
3.Rutala, WA, Weber, DJ. Reprocessing endoscopes: United States perspective. J Hosp Infect 2004;56(Suppl 2):S27S39.
4.Culver, DA, Gordon, SM, Mehta, AC. Infection control in the bronchoscopy suite: a review of outbreaks and guidelines for prevention. Am J Respir Crit Care Med 2003;167:10501056.
5.Srinivasan, A, Wolfenden, LL, Song, X, et al.An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. N Engl J Med 2003;348:221227.
6.Kirschke, DL, Jones, TF, Craig, AS, et al.Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003;348:214220.
7.Kolmos, HJ, Lerche, A, Kristoffersen, K, Rosdahl, VT. Pseudo-outbreak of Pseudomonas aeruginosa in HIV-infected patients undergoing fiberoptic bronchoscopy. Scand J Infect Dis 1994;26:653657.
8.Sammartino, MT, Israel, RH, Magnussen, CR. Pseudomonas aeruginosa contamination of fiberoptic bronchoscopes. J Hosp Infect 1982;3:6571.
9.Blanc, DS, Parret, T, Janin, B, Raselli, P, Francioli, P. Nosocomial infections and pseudoinfections from contaminated bronchoscopes: two-year follow-up using molecular markers. Infect Control Hosp Epidemiol 1997;18:134136.
10.Corne, P, Godreuil, S, Jean-Pierre, H, et al.Unusual implication of biopsy forceps in outbreaks of Pseudomonas aeruginosa infections and pseudo-infections related to bronchoscopy. J Hosp Infect 2005;61:2026.
11.Grothues, D, Tummler, B. New approaches in genome analysis by pulsed -field gel electrophoresis: application to the analysis of Pseudomonas species. Mol Microbiol 1991;5:27632776.
12.Miller, PR, Johnson, JC 3rd, Karchmer, T, Hoth, JJ, Meredith, JW, Chang, MC. National Nosocomial Infection Surveillance system: from benchmark to bedside in trauma patients. J Trauma 2006;60:98103.
13.Pugin, J, Auckenthaler, R, Mili, N, lanssens, JP, Lew, PD, Suter, PM. Diagnosis of ventilator-associated pneumonia by bacteriologie analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis 1991;143:11211129.
14.Bone, RC, Sibbald, WJ, Sprung, CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 1992;101:14811483.
15.Alvarado, CJ, Reichelderfer, M; Association for Professionals in Infection Control. APIC guideline for infection prevention and control in flexible endoscopy. Am J Infect Control 2000;28:138155.
16.Feigal, DJ, Hughes, JM. FDA and CDC public health advisory: infections from endoscopes inadequately reprocessed by an automated endoscope reprocessing system. 1999. Available at: Accessed May 21, 2008.

Outbreak of Pseudomonas aeruginosa Infection Associated With Contamination of a Flexible Bronchoscope

  • Carlos A. DiazGranados (a1) (a2), Marolyn Y. Jones (a2), Thiphasone Kongphet-Tran (a2), Nancy White (a2), Mark Shapiro (a3), Yun F. Wang (a4) (a3), Susan M. Ray (a1) (a2) and Henry M. Blumberg (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed