Skip to main content Accessibility help
×
Home

Nosocomial Outbreak of Infection With Multidrug-Resistant Acinetobacter baumannii in a Medical Center in Taiwan

  • Hui-Lan Chang (a1), Chih-Hsin Tang (a2), Yuan-Man Hsu (a3), Lei Wan (a4), Ya-Fen Chang (a1), Chiung-Tsung Lin (a1), Yao-Ru Tseng (a1), Ying-Ju Lin (a4), Jim Jinn-Chyuan Sheu (a4), Cheng-Wen Lin (a5), Yun-Chieh Chang (a6), Mao-Wang Ho (a7), Chia-Der Lin (a8), Cheng-Mao Ho (a1) (a7) and Chih-Ho Lai (a9)...

Abstract

Objective.

To investigate a nosocomial outbreak of infection with multidrug-resistant (MDR) Acinetobacter baumannii in the intensive care units at China Medical University Hospital in Taiwan.

Design.

Prospective outbreak investigation.

Setting.

Three intensive care units in a 2,000-bed university hospital in Taichung, Taiwan.

Methods.

Thirty-eight stable patients in 3 intensive care units, all of whom had undergone an invasive procedure, were enrolled in our study. Ninety-four A. baumannii strains were isolated from the patients or the environment in the 3 intensive care units, during the period from January 1 through December 31, 2006. We characterized A. baumannii isolates by use of repetitive extragenic palindromic–polymerase chain reaction (REP-PCR) and random amplified polymorphic DNA (RAPD) fingerprinting. The clinical characteristics of the source patients and the environment were noted.

Results.

All of the clinical isolates were determined to belong to the same epidemic strain of MDR A. baumannii by the use of antimicrobial susceptibility tests, REP-PCR, and RAPD fingerprinting. All patients involved in the infection outbreak had undergone an invasive procedure. The outbreak strain was also isolated from the environment and the equipment in the intensive care units. Moreover, an environmental survey of one of the intensive care units found that both the patients and the environment harbored the same outbreak strain.

Conclusion.

The outbreak strain of A. baumannii might have been transmitted among medical staff and administration equipment. Routine and aggressive environmental and equipment disinfection is essential for preventing recurrent outbreaks of nosocomial infection with MDR A. baumannii.

Copyright

Corresponding author

Department of Microbiology, School of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan (chl@mail.cmu.edu.tw)
Internal Medicine, China Medical University Hospital, 2 Yuh Der Road, Taichung, Taiwan (shihkuo.ho@msa.hinet.net)

References

Hide All
1.Bergogne-Berezin, E, Towner, KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148165.
2.Cefai, C, Richards, J, Gould, FK, McPeake, P. An outbreak of Acinetobacter respiratory tract infection resulting from incomplete disinfection of ventilatory equipment. J Hosp Infect 1990;15:177182.
3.Siegman-Igra, Y, Bar-Yosef, S, Gorea, A, Avram, J. Nosocomial Acinetobacter meningitis secondary to invasive procedures: report of 25 cases and review. Clin Infect Dis 1993;17:843849.
4.Okpara, AU, Maswoswe, JJ. Emergence of multidrug-resistant isolates of Acinetobacter baumannii. Am J Hosp Pharm 1994;51:26712675.
5.Martin-Lozano, D, Cisneros, JM, Becerril, B, et al. Comparison of a repetitive extragenic palindromic sequence-based PCR method and clinical and microbiological methods for determining strain sources in cases of nosocomial Acinetobacter baumannii bacteremia. J Clin Microbiol 2002;40:45714575.
6.Bou, G, Cervero, G, Dominguez, MA, Quereda, C, Martinez-Beltran, J. PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clin Microbiol Infect 2000;6:635643.
7.Wisplinghoff, H, Edmond, MB, Pfaller, MA, Jones, RN, Wenzel, RP, Seifert, H. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin Infect Dis 2000;31:690697.
8.Fournier, PE, Richet, H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006;42:692699.
9.CLSI. Performance standards for antimicrobial disk susceptibility tests; approved standard—ninth edition. CLSI document. Wayne, PA: CLSI,2006:M2A9.
10.Snelling, AM, Gerner-Smidt, P, Hawkey, PM, et al. Validation of use of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for typing strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex and application of the method to the investigation of a hospital outbreak. J Clin Microbiol 1996;34:11931202.
11.Reboli, AC, Houston, ED, Monteforte, JS, Wood, CA, Hamill, RJ. Discrimination of epidemic and sporadic isolates of Acinetobacter baumannii by repetitive element PCR-mediated DNA fingerprinting. J Clin Microbiol 1994;32:26352640.
12.Seifert, H, Schulze, A, Baginski, R, Pulverer, G. Comparison of four different methods for epidemiologic typing of Acinetobacter baumannii. J Clin Microbiol 1994;32:18161819.
13.Seifert, H, Gerner-Smidt, P. Comparison of ribotyping and pulsed-field gel electrophoresis for molecular typing of Acinetobacter isolates. J Clin Microbiol 1995;33:14021407.
14.Bou, G, Cervero, G, Dominguez, MA, Quereda, C, Martinez-Beltran, J. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of β-lactamases. J Clin Microbiol 2000;38:32993305.
15.Scerpella, EG, Wanger, AR, Armitige, L, Anderlini, P, Ericsson, CD. Nosocomial outbreak caused by a multiresistant clone of Acinetobacter baumannii: results of the case-control and molecular epidemiologic investigations. Infect Control Hosp Epidemiol 1995;16:9297.
16.Scott, P, Deye, G, Srinivasan, A, et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin Infect Dis 2007;44:15771584.
17.Getchell-White, SI, Donowitz, LG, Groschel, DH. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect Control Hosp Epidemiol 1989;10:402407.
18.Denton, M, Wilcox, MH, Parnell, P, et al. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J Hosp Infect 2004;56:106110.
19.Jawad, A, Snelling, AM, Heritage, J, Hawkey, PM. Exceptional desiccation tolerance of Acinetobacter radioresistens. J Hosp Infect 1998;39:235240.
20.Catalano, M, Quelle, LS, Jeric, PE, Di Martino, A, Maimone, SM. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect 1999;42:2735.
21.Wendt, C, Dietze, B, Dietz, E, Ruden, H. Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 1997;35:13941397.
22.Peleg, AY, Seifert, H, Paterson, DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21:538582.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed