Skip to main content Accessibility help
×
Home

A Model-Based Strategy to Control the Spread of Carbapenem-Resistant Enterobacteriaceae: Simulate and Implement

  • Mirian de Freitas DalBen (a1) (a2), Elisa Teixeira Mendes (a1) (a2), Maria Luisa Moura (a1), Dania Abdel Rahman (a1), Driele Peixoto (a1), Sania Alves dos Santos (a1) (a2), Walquiria Barcelos de Figueiredo (a3), Pedro Vitale Mendes (a4), Leandro Utino Taniguchi (a4), Francisco Antonio Bezerra Coutinho (a5), Eduardo Massad (a5) and Anna Sara Levin (a1) (a2)...

Abstract

OBJECTIVE

To reduce transmission of carbapenem-resistant Enterobacteriaceae (CRE) in an intensive care unit with interventions based on simulations by a developed mathematical model.

DESIGN

Before-after trial with a 44-week baseline period and 24-week intervention period.

SETTING

Medical intensive care unit of a tertiary care teaching hospital.

PARTICIPANTS

All patients admitted to the unit.

METHODS

We developed a model of transmission of CRE in an intensive care unit and measured all necessary parameters for the model input. Goals of compliance with hand hygiene and with isolation precautions were established on the basis of the simulations and an intervention was focused on reaching those metrics as goals. Weekly auditing and giving feedback were conducted.

RESULTS

The goals for compliance with hand hygiene and contact precautions were reached on the third week of the intervention period. During the baseline period, the calculated R0 was 11; the median prevalence of patients colonized by CRE in the unit was 33%, and 3 times it exceeded 50%. In the intervention period, the median prevalence of colonized CRE patients went to 21%, with a median weekly Rn of 0.42 (range, 0–2.1).

CONCLUSIONS

The simulations helped establish and achieve specific goals to control the high prevalence rates of CRE and reduce CRE transmission within the unit. The model was able to predict the observed outcomes. To our knowledge, this is the first study in infection control to measure most variables of a model in real life and to apply the model as a decision support tool for intervention.

Infect Control Hosp Epidemiol 2016;1–8

Copyright

Corresponding author

Address correspondence to Mirian F. DalBen, MD, Department of Infection Control of Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Frei Caneca, 640/252-Vereda, São Paulo, Brazil 01307-000 (miriandalben@gmail.com).

References

Hide All
1. Gupta, N, Limbago, BM, Patel, JB, Kallen, AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011;53:6067.
2. Gaynes, RP, Culver, DH. Resistance to imipenem among selected gram-negative bacilli in the United States. Infect Control Hosp Epidemiol 1992;13:1014.
3. Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 2013;34:114.
4. Rossi, F. The challenges of antimicrobial resistance in Brazil. Clin Infect Dis 2011;52:11381143.
5. Sypsa, V, Psichogiou, M, Bouzala, GA, et al. Transmission dynamics of carbapenemase-producing Klebsiella pneumoniae and anticipated impact of infection control strategies in a surgical unit. PLOS ONE 2012;e41068.
6. Cooper, BS, Medley, GF, Scott, GM. Preliminary analysis of the transmission dynamics of nosocomial infections: stochastic and management effects. J Hosp Infect 1999;43:131147.
7. van Kleef, E, Robotham, JV, Jit, M, Deeny, SR, Edmunds, WJ. Modelling the transmission of healthcare associated infections: a systematic review. BMC Infect Dis 2013;13:294307.
8. Feldman, N, Adler, A, Molshatzki, N, et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect 2013;19:E190E196.
9. Zimmerman, FS, Assous, MV, Bdolah-Abram, T, Lachish, T, Yinnon, AM, Wiener-Well, Y. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am J Infect Control 2013;41:190194.
10. Massad, E, Coutinho, FAB, Yang, HM, de Carvalho, HB, Mesquita, F, Burattini, MN. The basic reproduction ratio of HIV among intravenous-drug-users. Math Biosci 1994;23:227247.
11. World Health Organization. WHO guidelines on hand hygiene in health care. World Health Organization website. http://apps.who.int/iris/bitstream/10665/44102/1/9789241597906_eng.pdf. Published 2009. Acessed December 29, 2015.
12. Larson, EL, Strom, MS, Evans, CA. Analysis of three variables in sampling solutions used to assay bacteria of hands: type of solution, use of antiseptic neutralizers, and solution temperature. J Clin Microbiol 1980;12:355360.
13. Ivers, N, Jamtvedt, G, Flottorp, S, et al. Audit and feedback: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev 2012;13:CD000259.
14. Swaminathan, M, Sharma, S, Poliansky, BS, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol 2013;34:809817.
15. Bhargava, A, Hayakawa, K, Silverman, E, et al. Risk factors for colonization due to carbapenem-resistant Enterobacteriaceae among patients exposed to long-term acute care and acute care facilities. Infect Control Hosp Epidemiol 2014;35:398405.
16. Pereira, GH, Garcia, DO, Mostardeiro, M, Fanti, KSVN, Levin, AS. Outbreak of carbapenem-resistant Klebsiella pneumoniae: two-year epidemiologic follow-up in a tertiary hospital. Mem Inst Oswaldo Cruz 2013;108:113115.
17. D’Agata, EM, Webb, G, Horn, M. A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci. J Infect Dis 2005;192:20042011.
18. Lin, MY, Lolans, K, Blom, DW, et al. The effectiveness of routine daily chlorhexidine gluconate bathing in reducing Klebsiella pneumoniae carbapenemase–producing Enterobacteriaceae skin burden among long-term acute care hospital patients. Infect Control Hosp Epidemiol 2014;35:440442.
Type Description Title
WORD
Supplementary materials

DalBen supplementary material
DalBen supplementary material 1

 Word (43 KB)
43 KB

A Model-Based Strategy to Control the Spread of Carbapenem-Resistant Enterobacteriaceae: Simulate and Implement

  • Mirian de Freitas DalBen (a1) (a2), Elisa Teixeira Mendes (a1) (a2), Maria Luisa Moura (a1), Dania Abdel Rahman (a1), Driele Peixoto (a1), Sania Alves dos Santos (a1) (a2), Walquiria Barcelos de Figueiredo (a3), Pedro Vitale Mendes (a4), Leandro Utino Taniguchi (a4), Francisco Antonio Bezerra Coutinho (a5), Eduardo Massad (a5) and Anna Sara Levin (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed