Skip to main content Accessibility help

Impact of Safety-Engineered Devices on the Incidence of Occupational Blood and Body Fluid Exposures Among Healthcare Personnel in an Academic Facility, 2000–2014

  • Hajime Kanamori (a1) (a2), David J. Weber (a1) (a2) (a3), Lauren M. DiBiase (a1) (a2), Karen L. Pitman (a3), Stephanie A. Consoli (a3), James Hill (a3) (a4), Emily E. Sickbert-Bennett (a1) (a2) and William A. Rutala (a1) (a2) (a3)...



Legislative actions and advanced technologies, particularly dissemination of safety-engineered devices, have aided in protecting healthcare personnel from occupational blood and body fluid exposures (BBFE).


To investigate the trends in BBFE among healthcare personnel over 15 years and the impact of safety-engineered devices on the incidence of percutaneous injuries as well as features of injuries associated with these devices.


Retrospective cohort study at University of North Carolina Hospitals, a tertiary care academic facility. Data on BBFE in healthcare personnel were extracted from Occupational Health Service records (2000–2014). Exposures associated with safety-engineered and conventional devices were compared. Generalized linear models were applied to measure the annual incidence rate difference by exposure type over time.


A total of 4,300 BBFE, including 3,318 percutaneous injuries (77%), were reported. The incidence rate for overall BBFE was significantly reduced during 2000–2014 (incidence rate difference, 1.72; P=.0003). The incidence rate for percutaneous injuries was also dramatically reduced during 2001–2006 (incidence rate difference, 1.37; P=.0079) but was less changed during 2006–2014. Percutaneous injuries associated with safety-engineered devices accounted for 27% of all BBFE. BBFE was most commonly due to injecting through skin, placing intravenous catheters, and blood drawing.


Our study revealed significant overall reduction in BBFE and percutaneous injuries likely due in part to the impact of safety-engineered devices but also identified that a considerable proportion of percutaneous injuries is now associated with these devices. Additional prevention strategies are needed to further reduce percutaneous injuries and improve design of safety-engineered devices.

Infect Control Hosp Epidemiol 2016;37:497–504


Corresponding author

Address correspondence to Hajime Kanamori, MD, PhD, MPH, Hospital Epidemiology, UNC Health Care, 1001 West Wing CB #7600, 101 Manning Dr, Chapel Hill, NC 27514 (


Hide All
1. Centers for Disease Control and Prevention (CDC). Workbook for designing, implementing and evaluating a sharps injury prevention program. CDC website. Accessed July 19, 2015.
2. Tarantola, A, Abiteboul, D, Rachline, A. Infection risks following accidental exposure to blood or body fluids in health care workers: a review of pathogens transmitted in published cases. Am J Infect Control 2006;34:367375.
3. Deuffic-Burban, S, Delarocque-Astagneau, E, Abiteboul, D, Bouvet, E, Yazdanpanah, Y. Blood-borne viruses in health care workers: prevention and management. J Clin Virol 2011;52:410.
4. Panlilio, AL, Orelien, JG, Srivastava, PU, et al; NaSH Surveillance Group; EPINet Data Sharing Network. Estimate of the annual number of percutaneous injuries among hospital-based healthcare workers in the United States, 1997-1998. Infect Control Hosp Epidemiol 2004;25:556562.
5. US General Accounting Office (GAO). Occupational safety: selected cost and benefit implications of needlestick prevention devices for hospitals, GAO-01-60R. GAO website. Published November 17, 2000.
6. Phillips, EK, Conaway, M, Parker, G, Perry, J, Jagger, J. Issues in understanding the impact of the Needlestick Safety and Prevention Act on hospital sharps injuries. Infect Control Hosp Epidemiol 2013;34:935939.
7. Needlestick Safety and Prevention Act of 2000, Pub L No. 106-430, 114 Stat 190. National Institutes of Health website. Published November 6, 2000.
8. Jagger, J, Perry, J, Gomaa, A, Phillips, EK. The impact of US policies to protect healthcare workers from bloodborne pathogens: the critical role of safety-engineered devices. J Infect Public Health 2008;1:6271.
9. Jagger, J, Perry, J. Safety-engineered devices in 2012: the critical role of healthcare workers in device selection. Infect Control Hosp Epidemiol 2013;34:615618.
10. Phillips, EK, Conaway, MR, Jagger, JC. Percutaneous injuries before and after the Needlestick Safety and Prevention Act. N Engl J Med 2012;366:670671.
11. Tosini, W, Ciotti, C, Goyer, F, et al. Needlestick injury rates according to different types of safety-engineered devices: results of a French multicenter study. Infect Control Hosp Epidemiol 2010;31:402407.
12. Black, L. Chinks in the armor: percutaneous injuries from hollow bore safety-engineered sharps devices. Am J Infect Control 2013;41:427432.
13. The National Institute for Occupational Safety and Health (NIOSH). Stop Sticks Campaign. NIOSH website. Accessed December 4, 2015.
14. Tuma, S, Sepkowitz, KA. Efficacy of safety-engineered device implementation in the prevention of percutaneous injuries: a review of published studies. Clin Infect Dis 2006;42:11591170.
15. Tarigan, LH, Cifuentes, M, Quinn, M, Kriebel, D. Prevention of needle-stick injuries in healthcare facilities: a meta-analysis. Infect Control Hosp Epidemiol 2015;36:823829.
16. Floret, N, Ali-Brandmeyer, O, L’Hériteau, F, et al; Working Group AES-RAISIN. Sharp decrease of reported occupational blood and body fluid exposures in French hospitals, 2003-2012: results of the French National Network Survey, AES-RAISIN. Infect Control Hosp Epidemiol 2015;36:963968.
17. Haiduven, D, Applegarth, S, Shroff, M. An experimental method for detecting blood splatter from retractable phlebotomy and intravascular devices. Am J Infect Control 2009;37:127130.
18. Ansari, A, Ramaiah, P, Collazo, L, Salihu, HM, Haiduven, D. Comparison of visual versus microscopic methods to detect blood splatter from an intravascular catheter with engineered sharps injury protection. Infect Control Hosp Epidemiol 2013;34:11741180.
19. Roff, M, Basu, S, Adisesh, A. Do active safety-needle devices cause spatter contamination? J Hosp Infect 2014;86:221223.
20. Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Healthcare Infection Control Practices Advisory Committee (HICPAC). 2007 Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. HICPAC website. Accessed July 19, 2015.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed