Skip to main content Accessibility help
×
Home

Excess Length of Stay Due to Central Line–Associated Bloodstream Infection in Intensive Care Units in Argentina, Brazil, and Mexico

  • Adrian G. Barnett (a1), Nicholas Graves (a1), Victor D. Rosenthal (a2), Reinaldo Salomao (a3) and Manuel Sigfrido Rangel-Frausto (a4)...

Extract

Objective.

To estimate the excess length of stay in an intensive care unit (ICU) due to a central line-associated bloodstream infection (CLABSI), using a multistate model that accounts for the timing of infection.

Design.

A cohort of 3,560 patients followed up for 36,806 days in ICUs.

Setting.

Eleven ICUs in 3 Latin American countries: Argentina, Brazil, and Mexico.

Patients.

All patients admitted to the ICU during a defined time period with a central line in place for more than 24 hours.

Results.

The average excess length of stay due to a CLABSI increased in 10 of 11 ICUs and varied from -1.23 days to 4.69 days. A reduction in length of stay in Mexico was probably caused by an increased risk of death due to CLABSI, leading to shorter times to death. Adjusting for patient age and Average Severity of Illness Score tended to increase the estimated excess length of stays due to CLABSI.

Conclusions.

CLABSIs are associated with an excess length of ICU stay. The average excess length of stay varies between ICUs, most likely because of the case-mix of admissions and differences in the ways that hospitals deal with infections.

Copyright

Corresponding author

Institute of Health and Biomedical Innovation and School of Public Health, 60 Musk Avenue, Queensland University of Technology, Kelvin Grove, Australia, (a.barnett@qut.edu.au)

References

Hide All
1.Crnich, CJ, Maki, DG. The role of intravascular devices in sepsis. Curr Infect Dis Rep 2001;3(6):496506.
2.Rosenthal, VD, Guzman, S, Orellano, PW. Nosocomial infections in medical-surgical intensive care units in Argentina: attributable mortality and length of stay. Am J Infect Control 2003;31(5):291295.
3.Rosenthal, VD, Guzman, S, Crnich, C. Device-associated nosocomial infection rates in intensive care units of Argentina. Infect Control Hosp Epidemiol 2004;25(3):251255.
4.Rosenthal, VD, Maki, DG, Salomao, R, et al.Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann Intern Med 2006;145(8):582591.
5.Moreno, CA, Rosenthal, VD, Olarte, N, et al.Device-associated infection rate and mortality in intensive care units of 9 Colombian hospitals: findings of the International Nosocomial Infection Control Consortium. Infect Control Hosp Epidemiol 2006;27(4):349356.
6.Ramirez Barba, EJ, Rosenthal, VD, Higuera, F, et al.Device-associated nosocomial infection rates in intensive care units in four Mexican public hospitals. Am J Infect Control 2006;34(4):244247.
7.Mehta, A, Rosenthal, VD, Mehta, Y, et al.Device-associated nosocomial infection rates in intensive care units of seven Indian cities: findings of the International Nosocomial Infection Control Consortium (INICC). J Hosp Infect 2007;67(2):168174.
8.Leblebicioglu, H, Rosenthal, VD, Arikan, OA, et al.Device-associated hospital-acquired infection rates in Turkish intensive care units: findings of the International Nosocomial Infection Control Consortium (INICC). J Hosp Infect 2007;65(3):251257.
9.Salomao, R, Rosenthal, VD, Grimberg, G, et al.Device-associated infection rates in intensive care units of Brazilian hospitals: findings of the International Nosocomial Infection Control Consortium. Rev Panam Salud Publica 2008;24(3):195202.
10.Cuellar, LE, Fernandez-Maldonado, E, Rosenthal, VD, et al.Device-associated infection rates and mortality in intensive care units of Peruvian hospitals: findings of the International Nosocomial Infection Control Consortium. Rev Panam Salud Publica 2008;24(1):1624.
11.Rosenthal, VD, Maki, DG, Mehta, A, et al.International Nosocomial Infection Control Consortium report, data summary for 2002-2007, issued January 2008. Am J Infect Control 2008;36(9):627637.
12.Rosenthal, VD. Central line-associated bloodstream infections in limited-resource countries: a review of the literature. Clin Infect Dis 2009;49(12) :18991907.
13.Madani, N, Rosenthal, VD, Dendane, T, Abidi, K, Zeggwagh, AA, Abouqal, R. Healthcare-associated infections rates, length of stay, and bacterial resistance in an intensive care unit of Morocco: findings of the International Nosocomial Infection Control Consortium (INICC). Int Arch Med 2009;2(1):29.
14.Beyersmann, J, Gastmeier, P, Grundmann, H, et al.Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection. Infect Control Hosp Epidemiol 2006;27(5):493499.
15.Stone, PW, Gupta, A, Loughrey, M, et al.Attributable costs and length of stay of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2003;24(8):601606.
16.Graves, N, Hakton, K, Robertus, L. Chapter 17: costs of healthcare associated infection. In: Ferguson, J, Cruikshank, M, eds. National Surveillance of Health Care Associated Infection in Australia. Canberra: Australian Commission on Safety and Quality in Health Care (ACSQHC), 2008.
17.Rosenthal, VD, Guzman, S, Migone, O, Crnich, CJ. The attributable cost, length of hospital stay, and mortality of central line-associated bloodstream infection in intensive care departments in Argentina: a prospective, matched analysis. Am J Infect Control 2003;31(8):475480.
18.Higuera, F, Rangel-Frausto, MS, Rosenthal, VD, et al.Attributable cost and length of stay for patients with central venous catheter-associated bloodstream infection in Mexico City intensive care units: a prospective, matched analysis. Infect Control Hosp Epidemiol 2007;28(1):3135.
19.Basu, A, Manning, W, Mullahy, J. Comparing alternative models: log vs Cox proportional hazard? Health Econ 2004;13:749765.
20.Schulgen, G, Kropec, A, Kappstein, I, Daschner, F, Schumacher, M. Estimation of extra hospital stay attributable to nosocomial infections: heterogeneity and timing of events. J Clin Epidemiol 2000;53:409417.
21.Graves, N, Weinhold, D, Birrell, F, et al.The effect of healthcare-acquired infection on length of hospital stay and cost. Infect Control Hosp Epidemiol 2007;28:280292.
22.Graves, N, Weinhold, D, Roberts, JAR. Correcting for bias when estimating the cost of hospital-acquired infection: an analysis of lower respiratory tract infections in nonsurgical patients. Health Econ 2005;14(7):755761.
23.Beyersmann, J, Wolkewitz, M, Schumacher, M. The impact of time-dependent bias in proportional hazards modelling. Stat Med 2008;27(30):64396454.
24.Rosenthal, V, Graves, N, Maki, D. An International Nosocomial Infection Control Consortium (INICC) goals and objectives, description of surveillance methods and operational activities. Am J Infect Control 2008;36(9): e1e12.
25.Edwards, JR, Peterson, KD, Andrus, ML. National Healthcare Safety Network (NHSN) report, data summary for 2006, issued June 2007. Am ] Infect Control 2007;35:290301.
26.Putter, H, Fiocco, M, Geskus, RB. Tutorial in biostatistics: competing risks and multistate models. Stat Med 2007;26(11):23892430.
27.Dobson, AJ, Barnett, AG. An Introduction to Generalized Linear Models. Texts in Statistical Science. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC, 2008.
28.Allignol, A. etm: Empirical Transition Matrix. Version 0.4-7. http://cran.r-project.org/web/packages/etm/etm.pdf. Published 2009. Accessed September 14, 2010.
29.Barnett, A, Batra, R, Graves, N, Edgeworth, J, Robotham, J, Cooper, B. Using a longitudinal model to estimate the effect of methicillin-resistant Staphylococcus aureus infection on length of stay in an intensive care unit. Am J Epidemiol 2009;170(9):11861194.
30.Plummer, M. JAGS, version 1.0.3 manual, http://sourceforge.net/projects/mcmc-jags/files/Manuals/2.0/jags_user_manual.pdf/download. Published September 9, 2008. Accessed September 14, 2010.
31.Plummer, M, Best, N, Cowles, K, Vines, K. coda: Output analysis and diagnostics for MCMC. In: 2009:R, version 0.13-4.
32.Beyersmann, J, Gastmeier, P, Wolkewitz, M, Schumacher, M. An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation. J Clin Epidemiol 2008;61:12161221.
33.Beyersmann, J, Kneib, T, Schumacher, M, Gastmeier, P. Nosocomial infection, length of stay, and time-dependent bias. Infect Control Hosp Epidemiol 2009;30:273276.
34.Kahn, JM, Rubenfeld, GD, Rohrbach, J, Fuchs, BD. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med Care 2008;46:12261233.
35.Roberts, RR, Frutos, PW, Ciavarella, GC, et al.Distribution of fixed vs variable costs of hospital care. JAMA 1999;281(7):644649.
36.Graves, N, Halton, K, Lairson, D. Economics and preventing hospital-acquired infection- broadening the perspective. Infect Control Hosp Epidemiol 2007;28(2):178184.
37.Scott, RD, Soloman, SL, McGowan, JE. Applying economic principles to health care. Emerg Infect Dis 2001;7(2):282285.
38.Schoenfeld, DA, Richter, JR. Nomograms for calculating the number of patients needed for a clinical trial with survival as an end point. Biometrics 1982;38:163170.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed