Skip to main content Accessibility help

Estimating the Proportion of Healthcare-Associated Infections That Are Reasonably Preventable and the Related Mortality and Costs

  • Craig A. Umscheid (a1) (a2) (a3), Matthew D. Mitchell (a1), Jalpa A. Doshi (a1) (a3), Rajender Agarwal (a1), Kendal Williams (a1) (a3) and Patrick J. Brennan (a2) (a3) (a4)...



To estimate the proportion of healthcare-associated infections (HAIs) in US hospitals that are “reasonably preventable,” along with their related mortality and costs.


To estimate preventability of catheter-associated bloodstream infections (CABSIs), catheter-associated urinary tract infections (CAUTIs), surgical site infections (SSIs), and ventilator-associated pneumonia (VAP), we used a federally sponsored systematic review of interventions to reduce HAIs. Ranges of preventability included the lowest and highest risk reductions reported by US studies of “moderate” to “good” quality published in the last 10 years. We used the most recently published national data to determine the annual incidence of HAIs and associated mortality. To estimate incremental cost of HAIs, we performed a systematic review, which included costs from studies in general US patient populations. To calculate ranges for the annual number of preventable infections and deaths and annual costs, we multiplied our infection, mortality, and cost figures with our ranges of preventability for each HAI.


AS many as 65%–70% of cases of CABSI and CAUTI and 55% of cases of VAP and SSI may be preventable with current evidence-based strategies. CAUTI may be the most preventable HAI. CABSI has the highest number of preventable deaths, followed by VAP. CABSI also has the highest cost impact; costs due to preventable cases of VAP, CAUTI, and SSI are likely less.


Our findings suggest that 100% prevention of HAIs may not be attainable with current evidence-based prevention strategies; however, comprehensive implementation of such strategies could prevent hundreds of thousands of HAIs and save tens of thousands of lives and billions of dollars.


Corresponding author

Assistant Professor of Medicine and Epidemiology, Director, Center for Evidence-Based Practice, University of Pennsylvania, 3535 Market Street, Mezzanine, Suite 50, Philadelphia, PA 19104 (


Hide All
1. Kohn, LT, Corrigan, JM, Donaldson, MS, eds. To err is human: building a safer health system. National Academy of Sciences, 2000.
2. Klevens, RM, Edwards, JR, Richards, CL Jr, et al. Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep 2007;122(2):160166.
3. Ranji, SR, Shetty, K, Posley, KA, et al. Volume 6: prevention of healthcare-associated infections. Rockville, MD: Agency for Healthcare Research and Quality; 2007 January 2007. AHRQ publication 04(07)-0051-6.
4. Yokoe, DS, Mermel, LA, Anderson, DJ, et al. A compendium of strategies to prevent healthcare-associated infections in acute care hospitals. Infect Control Hosp Epidemiol 2008;29(suppl 1): S12S21.
5. Wald, HL, Kramer, AM. Nonpayment for harms resulting from medical care: catheter-associated urinary tract infections. JAMA 2007;298(23):27822784.
6. Pronovost, PJ, Goeschel, CA, Wachter, RM. The wisdom and justice of not paying for “preventable complications.” JAMA 2008;299(18):21972199.
7. Brown, A, Wells, P, Jaffey, J, et al. Point-of-care monitoring devices for long-term oral anticoagulation therapy: clinical and cost effectiveness. Ottawa: Canadian Agency for Drugs and Technologies in Health, 2007. Technology report 72.
8. DiGiovine, B, Chenoweth, C, Watts, C, Higgins, M. The attributable mortality and costs of primary nosocomial bloodstream infections in the intensive care unit. Am J Respir Crit Care Med 1999;160(3):976981.
9. Harbarth, S, Sax, H, Gastmeier, P. The preventable proportion of nosocomial infections: An overview of published reports. J Hosp Infect 2003;54(4):258266.
10. Shannon, RP, Patel, B, Cummins, D, Shannon, AH, Ganguli, G, Lu, Y. Economics of central line-associated bloodstream infections. Am J Med Qual 2006;21(suppl 6):7S16S.
11. Warren, DK, Quadir, WW, Hollenbeak, CS, Elward, AM, Cox, MJ, Fraser, VJ. Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med 2006;34(8):20842089.
12. Dimick, JB, Pelz, RK, Consunji, R, Swoboda, SM, Hendrix, CW, Lipsett, PA. Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg 2001;136(2):229234.
13. Lansford, T, Moncure, M, Carlton, E, et al. Efficacy of a pneumonia prevention protocol in the reduction of ventilator-associated pneumonia in trauma patients. Surg Infect (Larchmt) 2007;8(5):505510.
14. Warren, DK, Shukla, SJ, Olsen, MA, et al. Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit Care Med 2003;31(5):13121317.
15. Tambyah, PA, Knasinski, V, Maki, DG. The direct costs of nosocomial catheter-associated urinary tract infection in the era of managed care. Infect Control Hosp Epidemiol 2002;23(1):2731.
16. Saint, S, Veenstra, DL, Sullivan, SD, Chenoweth, C, Fendrick, AM. The potential clinical and economic benefits of silver alloy urinary catheters in preventing urinary tract infection. Arch Intern Med 2000;160(17):26702675.
17. Bologna, RA, Tu, LM, Polansky, M, Fraimow, HD, Gordon, DA, Whitmore, KE. Hydrogel/silver ion-coated urinary catheter reduces nosocomial urinary tract infection rates in intensive care unit patients: a multicenter study. Urology 1999;54(6):982987.
18. Dimick, JB, Chen, SL, Taheri, PA, Henderson, WG, Khuri, SF, Campbell, DA Jr. Hospital costs associated with surgical complications: a report from the private-sector national surgical quality improvement program. J Am Coll Surg 2004;199(4):531537.
19. Haley, RW, Culver, DH, White, JW, Morgan, WM, Emori, TG. The nationwide nosocomial infection rate: a new need for vital statistics. Am J Epidemiol 1985;121(2):159167.
20. Haley, RW, Culver, DH, White, JW, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985;121(2):182205.
21. Braun, BI, Kritchevsky, SB, Wong, ES, et al. Preventing central venous catheter-associated primary bloodstream infections: characteristics of practices among hospitals participating in the evaluation of processes and indicators in infection control (EPIC) study. Infect Control Hosp Epidemiol 2003;24(12):926935.
22. Kaye, KS, Engemann, JJ, Fulmer, EM, Clark, CC, Noga, EM, Sexton, DJ. Favorable impact of an infection control network on nosocomial infection rates in community hospitals. Infect Control Hosp Epidemiol 2006;27(3):228232.
23. Pittet, D, Harbarth, S. What techniques for diagnosis of ventilator-associated pneumonia? [see comment]. Lancet 1998; 352(9122):8384.
24. Meisen, WG, Rovers, MM, Bonten, MJ. Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med 2009;37(10):27092718.
25. Perencevich, EN, Stone, PW, Wright, SB, et al. Raising standards while watching the bottom line: making a business case for infection control. Infect Control Hosp Epidemiol 2007;28(10):11211133.
26. Pronovost, P, Needham, D, Berenholtz, S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006;355(26):27252732.
27. Berenholtz, SM, Pronovost, PJ, Lipsett, PA, et al. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 2004;32(10):20142020.
28. Coopersmith, CM, Zack, JE, Ward, MR, et al. The impact of bedside behavior on catheter-related bacteremia in the intensive care unit. Arch Surg 2004;139(2):131136.
29. Warren, DK, Zack, JE, Mayfield, JL, et al. The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 2004; 126(5):16121618.
30. Warren, DK, Zack, JE, Cox, MJ, Cohen, MM, Fraser, VJ. An educational intervention to prevent catheter-associated bloodstream infections in a nonteaching, community medical center. Crit Care Med 2003;31(7):19591963.
31. Coopersmith, CM, Rebmann, TL, Zack, JE, et al. Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Crit Care Med 2002; 30(1):5964.
32. Sherertz, RJ, Ely, EW, Westbrook, DM, et al. Education of physicians-in-training can decrease the risk for vascular catheter infection. Ann Intern Med 2000;132(8):641648.
33. Babcock, HM, Zack, JE, Garrison, T, et al. An educational intervention to reduce ventilator-associated pneumonia in an integrated health system: a comparison of effects. Chest 2004;125(6):22242231.
34. Zack, JE, Garrison, T, Trovillion, E, et al. Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit Care Med 2002;30(11):24072412.
35. Lai, KK, Baker, SP, Fontecchio, SA. Impact of a program of intensive surveillance and interventions targeting ventilated patients in the reduction of ventilator-associated pneumonia and its cost-effectiveness. Infect Control Hosp Epidemiol 2003;24(11):859863.
36. Topal, J, Conklin, S, Camp, K, Morris, V, Balcezak, T, Herbert, P. Prevention of nosocomial catheter-associated urinary tract infections through computerized feedback to physicians and a nurse-directed protocol. Am J Med Qual 2005;20(3):121126.
37. Dumigan, DG, Kohan, CA, Reed, CR, Jekel, JF, Fikrig, MK. Utilizing national nosocomial infection surveillance system data to improve urinary tract infection rates in three intensive-care units. Clin Perform Qual Health Care 1998;6(4):172178.
38. Dellinger, EP, Hausmann, SM, Bratzier, DW, et al. Hospitals collaborate to decrease surgical site infections. Am J Surg 2005;190(1):915.
39. Lutarewych, M, Morgan, SP, Hall, MM. Improving outcomes of coronary artery bypass graft infections with multiple interventions: putting science and data to the test. Infect Control Hosp Epidemiol 2004;25(6):517519.
40. Rao, N, Schilling, D, Rice, J, Ridenour, M, Mook, W, Santa, E. Prevention of postoperative mediastinitis: a clinical process improvement model. J Healthc Qual 2004;26(1):2227.
41. Cocanour, CS, Ostrosky-Zeichner, L, Peninger, M, et al. Cost of a ventilator-associated pneumonia in a shock trauma intensive care unit. Surg Infect (Larchmt) 2005;6(1):6572.
42. Relio, J, Ollendorf, DA, Oster, G, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Cliesi 2002;122(6):21152121.
43. Herwaldt, LA, Cullen, JJ, Scholz, D, et al. A prospective study of outcomes, healthcare resource utilization, and costs associated with postoperative nosocomial infections. Infect Control Hosp Epidemiol 2006;27(12):12911298.
44. Kirkland, KB, Briggs, JP, Trivette, SL, Wilkinson, WE, Sexton, DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 1999;20(11):725730.
45. Perencevich, EN, Sands, KE, Cosgrove, SE, Guadagnoli, E, Meara, E, Platt, R. Health and economic impact of surgical site infections diagnosed after hospital discharge. Emerg Infect Dis 2003;9(2):196203.
46. Dimick, JB, Pronovost, PJ, Cowan, JA, Lipsett, PA. Complications and costs after high-risk surgery: where should we focus quality improvement initiatives? J Am Coll Surg 2003;196(5):671678.
47. Herwaldt, LA, Swartzendruber, SK, Edmond, MB, et al. The epidemiology of hemorrhage related to cardiothoracic operations. Infect Control Hosp Epidemiol 1998;19(1):916.

Related content

Powered by UNSILO

Estimating the Proportion of Healthcare-Associated Infections That Are Reasonably Preventable and the Related Mortality and Costs

  • Craig A. Umscheid (a1) (a2) (a3), Matthew D. Mitchell (a1), Jalpa A. Doshi (a1) (a3), Rajender Agarwal (a1), Kendal Williams (a1) (a3) and Patrick J. Brennan (a2) (a3) (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.