Skip to main content Accessibility help
×
Home

Epidemiologic, Clinical, and Economic Evaluation of an Outbreak of Clonal Multidrug-Resistant Acinetobacter baumannii Infection in a Surgical Intensive Care Unit

  • Lisa S. Young (a1) (a2), Allison L. Sabel (a3) (a4) and Connie S. Price (a1)

Abstract

Objectives.

To determine risk factors for acquisition of multidrug-resistant (MDR) Acinetobacter baumannii infection during an outbreak, to describe the clinical manifestations of infection, and to ascertain the cost of infection.

Design.

Case-control study.

Setting.

Surgical intensive care unit in a 400-bed urban teaching hospital and level 1 trauma center.

Patients.

Case patients received a diagnosis of infection due to A. baumannii isolates with a unique pattern of drug resistance (ie, susceptible to imipenem, variably susceptible to aminoglycosides, and resistant to all other antibiotics) between December 1, 2004, and August 31, 2005. Case patients were matched 1 : 1 with concurrently hospitalized control patients. Isolates' genetic relatedness was established by pulsed-field gel electrophoresis.

Results.

Sixty-seven patients met the inclusion criteria. Case and control patients were similar with respect to age, duration of hospitalization, and Charlson comorbidity score. MDR A. baumannii infections included ventilator-associated pneumonia (in 56.7% of patients), bacteremia (in 25.4%), postoperative wound infections (in 25.4%), central venous catheter-associated infections (in 20.9%), and urinary tract infections (in 10.4%). Conditional multiple logistic regression was used to determine statistically significant risk factors on the basis of results from the bivariate analyses. The duration of hospitalization and healthcare charges were modeled by multiple linear regression. Significant risk factors included higher Acute Physiology and Chronic Health Evaluation II score (odds ratio [OR], 1.1 per point increase; P = .06), duration of intubation (OR, 1.4 per day intubated; P<.01), exposure to bronchoscopy (OR, 22.7; P = .03), presence of chronic pulmonary disease (OR, 77.7; P = .02), receipt of fluconazole (OR, 73.3; P<.01), and receipt of levofloxacin (OR, 11.5; P = .02). Case patients had a mean of $60,913 in attributable excess patient charges and a mean of 13 excess hospital days.

Interventions.

Infection control measures included the following: limitations on the performance of pulsatile lavage wound debridement, the removal of items with upholstered surfaces, and the implementation of contact isolation for patients with suspected MDR A. baumannii infection.

Conclusions.

This large outbreak of infection due to clonal MDR A. baumannii caused significant morbidity and expense. Aerosolization of MDR A. baumannii during pulsatile lavage debridement of infected wounds and during the management of respiratory secretions from colonized and infected patients may promote widespread environmental contamination. Multifaceted infection control interventions were associated with a decrease in the number of MDR A. baumannii isolates recovered from patients.

Copyright

Corresponding author

669 S. Gilpin St., Denver, CO 80209 (Young.Lisa@yahoo.com)

References

Hide All
1.Henriksen, SD. Moraxella, Acinetobacter, and the Mimeae. Bacteriol Rev 1973;37:522561.
2.Bergogne-Berezin, E, Towner, KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148165.
3.McBride, ME, Duncan, WC, Knox, JM. The environment and the microbial ecology of human skin. Appl Environ Microbiol 1977;33:603608.
4.Bernards, AT, Frenay, HM, Lim, BT, Hendriks, WD, Dijkshoorn, L, van Boven, CP. Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii: an unexpected difference in epidemiologic behavior. Am J Infect Control 1998;26:544551.
5.Wagenvoort, JH, Joosten, EJ. An outbreak Acinetobacter baumannii that mimics MRSA in its environmental longevity. J Hosp Infect 2002;52:226227.
6.Struelens, MJ, Carlier, E, Maes, N, Serruys, E, Quint, WG, van Belkum, A. Nosocomial colonization and infection with multiresistant Acinetobacter baumannii: outbreak delineation using DNA macrorestriction analysis and PCR-fingerprinting. J Hosp Infect 1993;25:1532.
7.Bayuga, S, Zeana, C, Sahni, J, Della-Latta, P, el-Sadr, W, Larson, E. Prevalence and antimicrobial patterns of Acinetobacter baumannii on hands and nares of hospital personnel and patients: the iceberg phenomenon again. Heart Lung 2002;31:382390.
8.El Shafie, SS, Alishaq, M, Leni Garcia, M. Investigation of an outbreak of multidrug-resistant Acinetobacter baumannii in trauma intensive care unit. J Hosp Infect 2004;56:101105.
9.McDonald, LC, Walker, M, Carson, L, et al. Outbreak of Acinetobacter spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners. Pediatr Infect Dis J 1998;17:716722.
10.Villers, D, Espaze, E, Coste-Burel, M, et al. Nosocomial Acinetobacter baumannii infections: microbiological and clinical epidemiology. Ann Intern Med 1998;129:182189.
11.Abbo, A, Navon-Venezia, S, Hammer-Muntz, O, Krichali, T, Siegman-Igra, Y, Carmeli, Y. Multidrug-resistant Acinetobacter baumannii. Emerg Infect Dis 2005;11:2229.
12.Manikal, VM, Landman, D, Saurina, G, Oydna, E, Lai, H, Quale, J. Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: city-wide prevalence, interinstitutional spread, and relation to antibiotic usage. Clin Infect Dis 2000;31:101106.
13.Maragakis, LL, Cosgrove, SE, Song, X, et al. An outbreak of multidrug-resistant Acinetobacter baumannii associated with pulsatile lavage wound treatment. JAMA 2004;292:30063011.
14.Husni, RN, Goldstein, LS, Arroliga, AC, et al. Risk factors for an outbreak of multi-drug-resistant Acinetobacter nosocomial pneumonia among intubated patients. Chest 1999;115:13781382.
15.Mulin, B, Talon, D, Viel, JF, et al. Risk factors for nosocomial colonization with multiresistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 1995;14:569576.
16.Charlson, ME, Pompei, P, Ales, KL, MacKenzie, CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373383.
17.Knaus, WA, Draper, EA, Wagner, DP, Zimmerman, JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818829.
18.Faoagali, J, Fong, J, George, N, Mahoney, P, O'Rourke, V. Comparison of the immediate, residual, and cumulative antibacterial effects of Novaderm R,* Novascrub R,* Betadine Surgical Scrub, Hibiclens, and liquid soap. Am J Infect Control 1995;23:337343.
19.Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Wayne, PA: CLSI;2006:M7A7.
20.Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: 15th Informational Supplement. Wayne, PA: CLSI;2005:M100S15.
21.Murray, BE, Singh, KV, Heath, JD, Sharma, BR, Weinstock, GM. Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 1990;28:20592063.
22.Tenover, FC, Arbeit, RD, Goering, RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:22332239.
23.Mulin, B, Rouget, C, Clement, C, et al. Association of private isolation rooms with ventilator-associated Acinetobacter baumannii pneumonia in a surgical intensive care unit. Infect Control Hosp Epidemiol 1997;18:499503.
24.Brooks, SE, Walczak, MA, Rizwanullah, H. Are we doing enough to contain Acinetobacter infections? Infect Control Hosp Epidemiol 2000;21:304.
25.Das, I, Lambert, P, Hill, D, Noy, M, Bion, J, Elliott, T. Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect 2002;50:110114.
26.Nunez, S, Moreno, A, Green, K, Villar, J. The stethoscope in the emergency department: a vector of infection? Epidemiol Infect 2000;124:233237.
27.Cisneros, JM, Reyes, MJ, Pachon, J, et al. Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clin Infect Dis 1996;22:10261032.
28.Rodriguez-Bano, J, Cisneros, JM, Fernandez-Cuenca, F, et al. Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infect Control Hosp Epidemiol 2004;25:819824.

Related content

Powered by UNSILO

Epidemiologic, Clinical, and Economic Evaluation of an Outbreak of Clonal Multidrug-Resistant Acinetobacter baumannii Infection in a Surgical Intensive Care Unit

  • Lisa S. Young (a1) (a2), Allison L. Sabel (a3) (a4) and Connie S. Price (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.