Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T08:10:04.331Z Has data issue: false hasContentIssue false

Ecological Study of the Effectiveness of Isolation Precautions in the Management of Hospitalized Patients Colonized or Infected With Acinetobacter baumannii

Published online by Cambridge University Press:  02 January 2015

Houssein Gbaguidi-Haore
Affiliation:
Service d'Hygiène Hospitalière et d'Epidémiologie Moléculaire, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
Sophie Legast
Affiliation:
Service d'Hygiène Hospitalière et d'Epidémiologie Moléculaire, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
Michelle Thouverez
Affiliation:
Service d'Hygiène Hospitalière et d'Epidémiologie Moléculaire, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
Xavier Bertrand*
Affiliation:
Service d'Hygiène Hospitalière et d'Epidémiologie Moléculaire, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
Daniel Talon
Affiliation:
Service d'Hygiène Hospitalière et d'Epidémiologie Moléculaire, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
*
Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire Jean Minjoz, Besançon, 25030 Besançon cedex, France (xavier.bertrand@univ-fcomte.fr)

Abstract

Objective.

To assess the impact of isolation precautions on the incidence of patients colonized or infected with Acinetobacter baumannii (case patients) in a university hospital during the period from 1999 to 2006.

Design.

Ecological study.

Setting.

The Besançon University Hospital in France, a 1,200-bed acute care hospital with approximately 50,000 admissions per year.

Methods.

Using Poisson regression analysis, we evaluated a total of 350,000 patient-days to determine the annual incidence of case patients. This annual incidence was used as the outcome variable, and infection control practices, antibiotic use, and other aggregated data regarding patients' age, sex, McCabe score, and immune status were used as covariates.

Results.

The implementation of isolation precautions was independently and negatively associated with the incidence of patients colonized or infected with A. baumannii (relative risk, 0.50 [95% confidence interval, 0.40–0.64]; P < .001).

Conclusions.

Our study suggests that the implementation of isolation precautions, in addition to standard precautions, effectively prevents the spread of A. baumannii in a hospital setting.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bergogne-Berezin, E, Towner, KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148165.CrossRefGoogle ScholarPubMed
2. Poirel, L, Menuteau, O, Agoli, N, Cattoen, C, Nordmann, P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol 2003;41:35423547.CrossRefGoogle Scholar
3. van den Broek, PJ, Arends, J, Bernards, AT, et al. Epidemiology of multiple Acinetobacter outbreaks in The Netherlands during the period 1999-2001. Clin Microbiol Infect 2006;12:837843.CrossRefGoogle ScholarPubMed
4. Valenzuela, JK, Thomas, L, Partridge, SR, van der Reijden, T, Dijkshoorn, L, Iredell, J. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii . J Clin Microbiol 2007;45:453460.CrossRefGoogle Scholar
5. Abbo, A, Navon-Venezia, S, Hammer-Muntz, O, Krichali, T, Siegman-Igra, Y, Carmeli, Y. Multidrug-resistant Acinetobacter baumannii . Emerg Infect Dis 2005;11:2229.CrossRefGoogle ScholarPubMed
6. Falagas, ME, Kopterides, P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect 2006;64:715.CrossRefGoogle ScholarPubMed
7. Poirel, L, Lebessi, E, Heritier, C, Patsoura, A, Foustoukou, M, Nordmann, P. Nosocomial spread of OXA-58-positive carbapenem-resistant Acinetobacter baumannii isolates in a paediatric hospital in Greece. Clin Microbiol Infect 2006;12:11381141.CrossRefGoogle Scholar
8. Baran, G, Erbay, A, Bodur, H, et al. Risk factors for nosocomial imipenem-resistant Acinetobacter baumannii infections. Int J Infect Dis 2008;12:1621.CrossRefGoogle ScholarPubMed
9. Hoban, DJ, Bouchillon, SK, Dowzicky, MJ. Antimicrobial susceptibility of extended-spectrum βlactamase producers and multidrug-resistant Acinetobacter baumannii throughout the United States and comparative in vitro activity of tigecycline, a new glycylcycline antimicrobial. Diagn Microbiol Infect Dis 2007;57:423428.CrossRefGoogle ScholarPubMed
10. Stephens, C, Francis, SJ, Abell, V, DiPersio, JR, Wells, P. Emergence of resistant Acinetobacter baumannii in critically ill patients within an acute care teaching hospital and a long-term acute care hospital. Am J Infect Control 2007;35:212215.CrossRefGoogle Scholar
11. Jawad, A, Seifert, H, Snelling, AM, Heritage, J, Hawkey, PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol 1998;36:19381941.CrossRefGoogle ScholarPubMed
12. Wendt, C, Dietze, B, Dietz, E, Ruden, H. Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 1997;35:13941397.CrossRefGoogle ScholarPubMed
13. Aygun, G, Demirkiran, O, Utku, T, et al. Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. J Hosp Infect 2002;52:259262.CrossRefGoogle Scholar
14. Mulin, B, Talon, D, Viel, JF, et al. Risk factors for nosocomial colonization with multiresistant Acinetobacter baumannii . Eur J Clin Microbiol Infect Dis 1995;14:569576.CrossRefGoogle ScholarPubMed
15. McCabe, WR, Jackson, GG. Gram-negative bacteremia. I. Etiology and ecology. Arch Intern Med 1962;110:847855.CrossRefGoogle Scholar
16. World Health Organization. Anatomic Therapeutic Chemical (ATC) classification index with defined daily doses (DDDs). Oslo, Norway: WHO Collaborating Centre for Drug Statistics Methodology; 2001.Google Scholar
17. Soussy, CJ, Carret, G, Cavallo, JD, et al. Antibiogram Committee of the French Microbiology Society. Report 2000-2001 [in French]. Pathol Biol (Paris) 2000;48:832871.Google Scholar
18. Talon, D, Dupont, MJ, Lesne, J, Thouverez, M, Michel-Briand, Y. Pulsed-field gel electrophoresis as an epidemiological tool for clonal identification of Aeromonas hydrophila . J Appl Bacteriol 1996;80:277282.CrossRefGoogle ScholarPubMed
19. Tenover, FC, Arbeit, RD, Goering, RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:22332239.CrossRefGoogle ScholarPubMed
20. Gbaguidi-Haore, H, Bertrand, X, Muller, A, Thouverez, M, Talon, D. Epidemiology of Acinetobacter baumannii in a French university hospital: are isolation precautions necessary, useful or non-essential? J Hosp Infect 2005;61:354355.CrossRefGoogle Scholar
21. Aboelela, SW, Saiman, L, Stone, P, Lowy, FD, Quiros, D, Larson, E. Effectiveness of barrier precautions and surveillance cultures to control transmission of multidrug-resistant organisms: a systematic review of the literature. Am J Infect Control 2006;34:484494.CrossRefGoogle ScholarPubMed
22. Safdar, N, Marx, J, Meyer, NA, Maki, DG. Effectiveness of preemptive barrier precautions in controlling nosocomial colonization and infection by methicillin-resistant Staphylococcus aureus in a burn unit. Am J Infect Control 2006;34:476483.CrossRefGoogle Scholar
23. Kuhn, L, Davidson, LL, Durkin, MS. Use of Poisson regression and time series analysis for detecting changes over time in rates of child injury following a prevention program. Am J Epidemiol 1994;140:943955.CrossRefGoogle ScholarPubMed