Skip to main content Accessibility help

Determinants of Legionella pneumophila Contamination of Water Distribution Systems: 15-Hospital Prospective Study

  • Richard M. Vickers (a1), Victor L. Yu (a1), S. Sue Hanna (a1), Paul Muraca (a1), Warren Diven (a1), Neil Carmen (a1) and Floyd B. Taylor (a1)...


We conducted a prospective environmental study for Legionella pneumophila in 15 hospitals in Pennsylvania. Hot water tanks, cold water sites, faucets, and show-erheads were surveyed four times over a one-year period. Sixty percent (9/15) of hospitals surveyed were contaminated with L pneumophila. Although contamination could not be linked to a specific municipal water supplier, most of the contaminated supplies came from rivers. Parameters found to be significantly associated with contamination included elevated hot water temperature, vertical configuration of the hot water tank, older tanks, and elevated calcium and magnesium concentrations of the water (P < 0.05). This study suggests that L pneumophila contamination could be predicted based on design of the distribution system, as well as physicochemical characteristics of the water.


Corresponding author

Infectious Disease Section, VA Medical Center, University Drive C, Pittsburgh, PA 15240


Hide All
1.Yu, VL, Kroboth, FJ, Shonnard, J, et al: Legionnaires' disease: New clinical perspective from a prospective pneumonia study. Am J Med 1982;73:357361.
2.Kirby, BD, Snyder, K, Meyer, R, et al: Legionnaires' disease: Report of 65 nosocomially acquired cases and a review of the literature. Medicine 1980;59:188205.
3.England, AC, Fraser, DW, Sporadic and epidemic nosocomial legionellosis in the United Slates. Am J Med 1981;70:707711.
4.Stout, J, Yu, VL, Vickers, RM, et al: Ubiquitousness of Legionella pneumophila in the water supply of a hospital with endemic Legionnaires' disease. N Engl J Med 1982;306:466468.
5.Best, M, Yu, VL, Stout, J, et al: Legionellaceae in the hospital water supply— Epidemiological link with disease and evaluation of a method for control of nosocomial Legionnaires' disease and Pittsburgh pneumonia. Lancet 1983;2:307310.
6.Müder, RRYu, VL, McClure, J, et al: Nosocomial Legionnaires' disease uncovered in a prospective pneumonia study: Implications for underdiag-nosis. JAMA 1983;249:31843192.
7.Johnson, JT, Yu, VL, Best, M, et al: Nosocomial legionellosis uncovered in surgical patients with head and neck cancer: Implications for epidemiologic reservoir and mode of transmission. Lancet 1985;2:298300.
8.Stout, JE, Boldin, MM, Best, MG, et al: Legionnaires' disease uncovered in a long-term care facility. Abstracts of the Annual Meeting of the American Society for Microbiology, Las Vegas, 1985; L24.
9.Bopp, CA, Sumner, JW, Morris, GK, et al: Isolation of Legionella spp from environmental water samples by low-pH treatment and use of a selective medium. J Clin Microbiol 1981;13:714719.
10.Willis, JB, Determination of calcium and magnesium in urine by atomic adsorption spectroscopy. Ann Chem 1961;33:556559.
11.Parker, MM, Humoller, FL, Mahler, DL, Determination of copper and zinc in biological material. Clin Chem 1967;13:4048.
12.Zettner, A, Sylvia, LC, Capacho-Delgado, L, The determination of serum iron and iron-binding capacity by atomic adsorption spectroscopy. Am J Clin Pathol 1966;45:533540.
13.Zinterhofer, LJM, Jatlow, PI, Fappiano, A, Atomic adsorption determination of lead in blood and urine in the presence of EDTA. J Lab Clin Med 1971;78:664674.
14.American Public Health Association: Standard Methods for the Examination of Waterand Waste-Water, ed 14. Washington, DC, American Public Health Association Inc, 1976.
15.The Generalized Linear Interactive Modeling System, release 3.77. Oxford, UK, Numerical Algorithms Group Inc, 1985.
16.Galen, RS, Cambino, SR, Beyond Normality: The Predictive Value and Effiriency of Medical Diagnoses. New York, John Wiley and Sons, 1975.
17.Vickers, RM, Brown, A, Garrity, CM, Dye-containing buffered charcoal yeast extract medium for the differentiation of members of the family Legionellaceae. J Clin Microbiol 1981;13:380382.
18.Wadowsky, RM, Yee, RB, A glycine-containing selective medium for isolation of Legionellaceae from environmental specimens. Appi Environ Microbiol 1981;42:768772.
19.Edelstein, PH, Snitzer, JB, Finegold, SM, Isolation of Legionella pneumophila from hospital potable water specimens: Comparison of direct plating with guinea pig inoculation. J Clin Microbiol 1982;15:10921096.
20.Muraca, P, Stout, J, Yu, VL, Comparative assessment of chlorine, heat, ozone, and ultraviolet light for killing L pneumophila within a model plumbing system. Appi Environ Microbiol 1987;53:447453.
21.Yee, RB, Wadowsky, RM, Multiplication of Legionella pneumophila in unsterilized tap water. Appi Environ Microbiol 1982;43:13301334.
22.Stout, JE, Best, MG, Yu, VL, The susceptibility of Legionellaceae to thermal stress: Implications for heat eradication methods in water distribution systems. Appi Environ Microbiol 1986;52:396399.
23.Stout, JE, Yu, VL, Best, M, Ecology of Legionella pneumophila within water distribution systems. Appi Environ Microbiol 1985;49:221228.

Determinants of Legionella pneumophila Contamination of Water Distribution Systems: 15-Hospital Prospective Study

  • Richard M. Vickers (a1), Victor L. Yu (a1), S. Sue Hanna (a1), Paul Muraca (a1), Warren Diven (a1), Neil Carmen (a1) and Floyd B. Taylor (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed