Skip to main content Accessibility help

Controlling for Severity of Illness in Outcome Studies Involving Infectious Diseases: Impact of Measurement at Different Time Points

  • Kerri A. Thom (a1), Michelle D. Shardell (a1), Regina B. Osih (a2), Marin L. Schweizer (a1), Jon P. Furuno (a1), Eli N. Perencevich (a1) (a3), Jessina C. McGregor (a4) and Anthony D. Harris (a1) (a3)...



Severity of illness is an important confounder in outcome studies involving infectious diseases. However, it is unclear whether the time at which severity of illness is measured is important.


We performed a retrospective study of 328 episodes of gram-negative bacteremia in adult patients to assess the impact of the time of measurement of severity of illness on the association between empirical antimicrobial therapy received and in-hospital mortality. Using a modified Acute Physiology Score (APS), severity of illness was measured at 2 time points: (1) hospital admission and (2) 24 hours before the first culture-positive blood sample was collected. Multivariate logistic regression was used to estimate the impact of adjusting for the APS on the relationship between empirical therapy received (ie, the exposure) and in-hospital mortality (ie, the outcome).


The mean APS ( ± standard deviation) of patients with bacteremia increased during their hospital stay (from 19.2 ± 11.6 at admission to 24.2 ± 13.6 at the second time point; P < .01). When examining the association between empirical antimicrobial therapy received and in-hospital mortality, and controlling for the APS, there was a trend toward a decreased impact of appropriate therapy received on in-hospital mortality. The unadjusted odds ratio (OR) for the association between appropriate therapy received and in-hospital mortality was 0.83 (95% confidence interval [CI], 0.51-1.34). After controlling for the APS at admission, this association was attenuated (OR, 0.94 [95% CI, 0.57-1.55]), and when a change in the APS was also included in the multivariate logistic regression model, the association was further attenuated (OR, 0.99 [95% CI, 0.58-1.69]).


The magnitude of the association between appropriate antimicrobial therapy received and in-hospital mortality among patients with gram-negative bacteremia was sensitive to the timing of adjustment for severity of illness.


Corresponding author

Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, 100 North Greene St., Lower Level, Baltimore, MD 21201 (


Hide All
1.Perencevich, EN. Excess shock and mortality in Staphylococcus aureus related to methicillin resistance. Clin Infect Dis 2000;31:13111313.
2.McGregor, JC, Rich, SE, Harris, AD, et al.A systematic review of the methodologies used to assess the association between appropriate antibiotic therapy and outcomes in bacteremic patients. Clin Infect Dis 2007;45:329337.
3.Hamilton, KW, Bilker, WB, Lautenbach, E. Controlling for severity of illness in assessment of the association between antimicrobial-resistant infection and mortality: impact of calculation of Acute Physiology and Chronic Health Evaluation (APACHE) II scores at different time points. Infect Control Hosp Epidemiol 2007;28:832836.
4.Marra, AR, Bearman, GM, Wenzel, RP, Edmond, MB. Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa. BMC Infect Dis 2006;6:132.
5.Osih, RB, McGregor, JC, Rich, SE, et al.Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2007;51:839844.
6.Sunenshine, RH, Wright, MO, Maragakis, LL, et al.Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 2007;13:97103.
7.Knaus, WA, Wagner, DP, Draper, EA, et al.The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991;100:16191636.
8.Harbarth, S, Garbino, J, Pugin, J, Romand, JA, Lew, D, Pittet, D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 2003;115:529535.
9.Kang, CI, Kim, SH, Park, WB, et al.Bloodstream infections due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother 2004;48:45744581.
10.McGregor, JC, Kim, PW, Perencevich, EN, et al.Utility of the Chronic Disease Score and Charlson Comorbidity Index as comorbidity measures for use in epidemiologic studies of antibiotic-resistant organisms. Am f Epidemiol 2005;161:483493.
11.CLSI. Performance standards for antimicrobial susceptibility testing: 16th informational supplement. CLSI document. Wayne, PA: CLSI, 2006: M100-S16.
12.Kang, CI, Kim, SH, Kim, HB, et al.Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003;37:745751.
13.Hansen, DS, Gottschau, A, Kolmos, HJ. Epidemiology of Klebsiella bacteremia: a case control study using Escherichia coli bacteraemia as control. J Hosp Infect 1998;38:119132.
14.Olesen, B, Kolmos, HJ, Orskov, F, Orskov, I, Gottschau, A. Bacteraemia due to Escherichia coli in a Danish university hospital, 1986-1990. Scand J Infect Dis 1995;27:253257.
15.Wisplinghoff, H, Bischoff, T, Tallent, SM, Seifert, H, Wenzel, RP, Edmond, MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004;39:309317.
16.Watanakunakorn, C, Jura, J. Klebsiella bacteremia: a review of 196 episodes during a decade (1980-1989). Scand J Infect Dis 1991;23:399405.
17.Marra, AR, Wey, SB, Castelo, A, et al.Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum β-lac-tamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence. BMC Infect Dis 2006;6:24.
18.Bryan, CS, Reynolds, KL, Brenner, ER. Analysis of 1,186 episodes of gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev Infect Dis 1983;5:629638.
19.Vidal, F, Mensa, J, Almela, M, et al.Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment: analysis of 189 episodes. Arch Intern Med 1996;156:21212126.

Related content

Powered by UNSILO

Controlling for Severity of Illness in Outcome Studies Involving Infectious Diseases: Impact of Measurement at Different Time Points

  • Kerri A. Thom (a1), Michelle D. Shardell (a1), Regina B. Osih (a2), Marin L. Schweizer (a1), Jon P. Furuno (a1), Eli N. Perencevich (a1) (a3), Jessina C. McGregor (a4) and Anthony D. Harris (a1) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.