Skip to main content Accessibility help
×
Home

Comparison of 2 Clostridium difficile Surveillance Methods National Healthcare Safely Network's Laboratory-Identified Event Reporting Module versus Clinical Infection Surveillance

  • Kathleen A. Gase (a1), Valerie B. Haley (a1), Kuangnan Xiong (a1), Carole Van Antwerpen (a1) and Rachel L. Stricof (a1) (a2)...

Abstract

Objective.

To determine whether the Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN) laboratory-identified (LabID) event reporting module for Clostridium difficile infection (CDI) is an adequate proxy measure of clinical CDI for public reporting purposes by comparing the 2 surveillance methods.

Design.

Validation study.

Setting.

Thirty New York State acute care hospitals.

Methods.

Six months of data were collected by 30 facilities using a clinical infection surveillance definition while also submitting the NHSN LabID event for CDI. The data sets were matched and compared to determine whether the assigned clinical case status matched the LabID case status. A subset of mismatches was evaluated further, and reasons for the mismatches were quantified. Infection rates determined using the 2 definitions were compared.

Results.

A total of 3,301 CDI cases were reported. Analysis of the original data yielded a 67.3% (2,223/3,301) overall case status match. After review and validation, there was 81.3% (2,683/3,301) agreement. The most common reason for disagreement (54.9%) occurred because the symptom onset was less than 48 hours after admission but the positive specimen was collected on hospital day 4 or later. The NHSN LabID hospital onset rate was 29% higher than the corresponding clinical rate and was generally consistent across all hospitals.

Conclusions.

Use of the NHSN LabID event minimizes the burden of surveillance and standardizes the process. With a greater than 80% match between the NHSN LabID event data and the clinical infection surveillance data, the New York State Department of Health made the decision to use the NHSN LabID event CDI data for public reporting purposes.

Copyright

Corresponding author

4252 McPherson Avenue, St. Louis, MO 63108 (kathleen.gase@gmail.com)

References

Hide All
1. Bartlett, JG. Clinical practice: antibiotic-associated diarrhea. N Engl J Med 2002;346:334339.
2. McDonald, LC, Owings, M, Jernigan, D. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003. Emerg Infect Dis 2006;12:409415.
3. Archibald, LK, Banerjee, SN, Jarvis, WR. Secular trends in hospital-acquired Clostridium difficile disease in the United States, 1987-2001. J Infect Dis 2004;189:15851589.
4. Ricciardi, R, Rothenberger, DA, Madoff, RD, Baxter, NN. Increasing prevalence and severity of Clostridium difficile colitis in hospitalized patients in the United States. Arch Surg 2007;142:624631.
5. Redelings, M, Sondilo, F, Mascola, L. Increase in Clostridium difficile–related mortality rates, United States, 1999-2004. Emerg Infect Dis 2007;13:14171419.
6. Lucado, J, Gould, C, Elixhauser, A. Clostridium difficile Infections (CDI) in Hospital Stays, 2009. HCUP statistical brief no. 124. Rockville, MD: Agency for Healthcare Research and Quality, US Department of Health and Human Services, 2011. http://www.hcup-us.ahrq.gov/reports/statbriefs/sbl24.pdf. Accessed April 2, 2012.
7. Hall, AJ, Curns, AT, McDonald, LC, Parashar, UD, Lopman, BA. The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999-2007. Clin Infect Dis 2012;55:216223.
8. Dubberke, ER, Reske, KA, Olsen, MA, McDonald, LC, Fraser, VJ. Short- and long-term attributable costs of Clostridium difficile-associated disease in nonsurgical inpatients. Clin Infect Dis 2008; 46:497504.
9. McDonald, LC, Coignard, B, Dubberke, E, Song, X, Horan, T, Kutty, PK; Ad Hoc Clostridium difficile Surveillance Working Group. Recommendations for surveillance of Clostridium difficile-associated disease. infect Control Hosp Epidemiol 2007;28:140145.
10. Multidrug-resistant organism and Clostridium difficile infection (MDRO/CDI) module. National Healthcare Safety Network website, http://www.cdc.gov/nhsn/mdro_cdad.html. Accessed January 10, 2012.
11. New York State Department of Health. Hospital-Acquired Infections: New York State 2010. Albany: New York State Department of Health, 2011. http://www.health.ny.gov/statistics/facilities/hospital/hospital_acquired_infections/2010/docs/hospital_acquired_infection.pdf. Accessed May 21, 2012.
12. Campbell, RJ, Giljahn, L, Machesky, K, et al. Clostridium difficile in Ohio hospitals and nursing homes during 2006. Infect Control Hosp Epidemiol 2009;30:526533.
13. California Department of Public Health. Healthcare-Associated Clostridium difficile Infections in California Hospitals, January 2009 through March 2010. Sacramento: California Department of Public Health, 2011. http://www.cdph.ca.gov/programs/hai/Documents/HAIReportSB-1058Cdiff-FINAL.pdf. Accessed May 21, 2012.
14. Medicare program; hospital inpatient prospective payment systems for acute care hospitals and the long-term care hospital prospective payment system and FY 2012 rates; hospitals' FTE resident caps for graduate medical education payment. Centers for Medicare and Medicaid Services website, http://www.naph.org/Main-Menu-Category/Our-Work/Safety-Net-Financing/Medicare/IPPS/FY2012-Final-IPPS-Rule.aspx?FT=.pdf. Accessed April 2, 2012.
15. Koll, BS, Ruiz, RE, Calfee, DP, et al. Prevention of hospital-onset Clostridium difficile infection in the New York metropolitan region using a collaborative intervention model. J Healthc Qual doi:10.111l/jhq.12002. Electronically published January 7,2012.
16. SPARCS overview. New York State Department of Health website, http://www.health.ny.gov/statistics/sparcs/operations/overview.htm. Accessed September 12, 2011.
17. Little, RJA, Rubin, DB. Statistical Analysis with Missing Data. Hoboken, NJ: Wiley, 2002.
18. Dallai, RM, Harbrecht, BG, Boujoukas, AJ, et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg 2002;235:363372.
19. McDonald, LC, Killgore, GE, Thompson, A, et al. An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 2005;353:24332441.
20. Dubberke, ER, Reske, KA, Olsen, MA, McDonald, LC, Fraser, VJ. Short- and long-term attributable costs of Clostridium difficile-associated disease in nonsurgical inpatients. Clin Infect Dis 2008; 46:497504.
21. McGlone, SM, Bailey, RR, Zimmer, SM, et al. The economic burden of Clostridium difficile . Clin Microbiol Infect 2012;18(3): 282289.

Comparison of 2 Clostridium difficile Surveillance Methods National Healthcare Safely Network's Laboratory-Identified Event Reporting Module versus Clinical Infection Surveillance

  • Kathleen A. Gase (a1), Valerie B. Haley (a1), Kuangnan Xiong (a1), Carole Van Antwerpen (a1) and Rachel L. Stricof (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed