Skip to main content Accessibility help
×
Home

Assessment of Healthcare Worker Protocol Deviations and Self-Contamination During Personal Protective Equipment Donning and Doffing

  • Jennie H. Kwon (a1), Carey-Ann D. Burnham (a2), Kimberly A. Reske (a1), Stephen Y. Liang (a1), Tiffany Hink (a1), Meghan A. Wallace (a2), Angela Shupe (a2), Sondra Seiler (a1), Candice Cass (a1), Victoria J. Fraser (a1) and Erik R. Dubberke (a1)...

Abstract

OBJECTIVE

To evaluate healthcare worker (HCW) risk of self-contamination when donning and doffing personal protective equipment (PPE) using fluorescence and MS2 bacteriophage.

DESIGN

Prospective pilot study.

SETTING

Tertiary-care hospital.

PARTICIPANTS

A total of 36 HCWs were included in this study: 18 donned/doffed contact precaution (CP) PPE and 18 donned/doffed Ebola virus disease (EVD) PPE.

INTERVENTIONS

HCWs donned PPE according to standard protocols. Fluorescent liquid and MS2 bacteriophage were applied to HCWs. HCWs then doffed their PPE. After doffing, HCWs were scanned for fluorescence and swabbed for MS2. MS2 detection was performed using reverse transcriptase PCR. The donning and doffing processes were videotaped, and protocol deviations were recorded.

RESULTS

Overall, 27% of EVD PPE HCWs and 50% of CP PPE HCWs made ≥1 protocol deviation while donning, and 100% of EVD PPE HCWs and 67% of CP PPE HCWs made ≥1 protocol deviation while doffing (P=.02). The median number of doffing protocol deviations among EVD PPE HCWs was 4, versus 1 among CP PPE HCWs. Also, 15 EVD PPE protocol deviations were committed by doffing assistants and/or trained observers. Fluorescence was detected on 8 EVD PPE HCWs (44%) and 5 CP PPE HCWs (28%), most commonly on hands. MS2 was recovered from 2 EVD PPE HCWs (11%) and 3 CP PPE HCWs (17%).

CONCLUSIONS

Protocol deviations were common during both EVD and CP PPE doffing, and some deviations during EVD PPE doffing were committed by the HCW doffing assistant and/or the trained observer. Self-contamination was common. PPE donning/doffing are complex and deserve additional study.

Infect Control Hosp Epidemiol 2017;38:1077–1083

Copyright

Corresponding author

Address correspondence to Jennie H. Kwon, DO, MSCI, 4523 Clayton Ave, Campus Box 8051 St Louis, MO 63110 (j.kwon@wustl.edu).

References

Hide All
1. Verbeek, JH, Ijaz, S, Mischke, C, et al. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 2016;4:Cd011621.
2. Fischer, WA 2d, Uyeki, TM, Tauxe, RV. Ebola virus disease: what clinicians in the United States need to know. Am J Infect Control 2015;43:788793.
3. Fischer, WA 2d, Weber, DJ, Wohl, DA. Personal protective equipment: protecting health care providers in an Ebola outbreak. Clin Ther 2015;37:24022410.
4. Sprecher, AG, Caluwaerts, A, Draper, M, et al. Personal protective equipment for filovirus epidemics: a call for better evidence. J Infect Dis 2015;212:S98S100.
5. Weber, DJ, Fischer, WA, Wohl, DA, Rutala, WA. Protecting healthcare personnel from acquiring Ebola virus disease. Infect Control Hosp Epidemiol 2015;36:12291232.
6. Sequence for putting on personal protective equipment (PPE). Centers for Disease Control and Prevention website. http://www.cdc.gov/hai/pdfs/ppe/ppeposter8511.pdf. Published 2014. Accessed September 8, 2016.
7. Tomas, ME, Kundrapu, S, Thota, P, et al. Contamination of health care personnel during removal of personal protective equipment. JAMA Intern Med 2015;175:19041910.
8. Beam, EL, Gibbs, SG, Boulter, KC, Beckerdite, ME, Smith, PW. A method for evaluating health care workers’ personal protective equipment technique. Am J Infect Control 2011;39:415420.
9. Bell, T, Smoot, J, Patterson, J, Smalligan, R, Jordan, R. Ebola virus disease: the use of fluorescents as markers of contamination for personal protective equipment. IDCases 2015;2:2730.
10. Casanova, L, Alfano-Sobsey, E, Rutala, WA, Weber, DJ, Sobsey, M. Virus transfer from personal protective equipment to healthcare employees’ skin and clothing. Emerging Infect Dis 2008;14:12911293.
11. Casanova, L, Rutala, WA, Weber, DJ, Sobsey, MD. Methods for the recovery of a model virus from healthcare personal protective equipment. J Appl Microbiol 2009;106:12441251.
12. Guo, YP, Li, Y, Wong, PL. Environment and body contamination: a comparison of two different removal methods in three types of personal protective clothing. Am J Infect Control 2014;42:e39e45.
13. Wong, TK, Chung, JW, Li, Y, et al. Effective personal protective clothing for health care workers attending patients with severe acute respiratory syndrome. Am J Infect Control 2004;32:9096.
14. Zamora, JE, Murdoch, J, Simchison, B, Day, AG. Contamination: a comparison of 2 personal protective systems. CMAJ 2006;175:249254.
15. Casanova, LM, Rutala, WA, Weber, DJ, Sobsey, MD. Effect of single- versus double-gloving on virus transfer to health care workers’ skin and clothing during removal of personal protective equipment. Am J Infect Control 2012;40:369374.
16. Tomas, ME, Cadnum, JL, Jencson, A, Donskey, CJ. The Ebola disinfection booth: evaluation of an enclosed ultraviolet light booth for disinfection of contaminated personal protective equipment prior to removal. Infect Control Hosp Epidemiol 2015;36:12261228.
17. Sassi, HP, Sifuentes, LY, Koenig, DW, et al. Control of the spread of viruses in a long-term care facility using hygiene protocols. Am J Infect Control 2015;43:702706.
18. Sifuentes, LY, Koenig, DW, Phillips, RL, Reynolds, KA, Gerba, CP. Use of hygiene protocols to control the spread of viruses in a hotel. Food Environ Virol 2014;6:175181.
19. Beamer, PI, Plotkin, KR, Gerba, CP, Sifuentes, LY, Koenig, DW, Reynolds, KA. Modeling of human viruses on hands and risk of infection in an office workplace using micro-activity data. J Occupat Environ Hygiene 2015;12:266275.
20. Guidance on personal protective equipment (PPE) to be used by healthcare workers during management of patients with confirmed Ebola or persons under investigation (PUIs) for Ebola who are clinically unstable or have bleeding, vomiting, or diarrhea in U.S. hospitals, including procedures for donning and doffing PPE. Centers for Disease Control and Prevention website. http://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance.html. Published 2015. Accessed September 8, 2016.
21. Ninove, L, Nougairede, A, Gazin, C, et al. RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests. PloS One 2011;6:e16142.
22. Casalino, E, Astocondor, E, Sanchez, JC, Diaz-Santana, DE, Del Aguila, C, Carrillo, JP. Personal protective equipment for the Ebola virus disease: a comparison of 2 training programs. Am J Infect Control 2015;43:12811287.
23. Herlihey, TA, Gelmi, S, Flewwelling, CJ, et al. Personal protective equipment for infectious disease preparedness: a human factors evaluation. Infect Control Hosp Epidemiol 2016;37:10221028.
24. Hon, CY, Gamage, B, Bryce, EA, et al. Personal protective equipment in health care: can online infection control courses transfer knowledge and improve proper selection and use? Am J Infect Control 2008;36:e33e37.
25. Weber, DJ, Rutala, WA, Fischer, WA, Kanamori, H, Sickbert-Bennett, EE. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control 2016;44(Suppl 5):e91e100.
26. Turnberg, W, Daniell, W, Seixas, N, et al. Appraisal of recommended respiratory infection control practices in primary care and emergency department settings. Am J Infect Control 2008;36:268275.
27. John, A, Tomas, ME, Cadnum, JL, et al. Are health care personnel trained in correct use of personal protective equipment? Am J Infect Control 2016;44:840842.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed