Skip to main content Accessibility help
×
Home

Anesthesia-Associated Carbon Monoxide Exposures Among Surgical Patients

  • Michele L. Pearson (a1), William C. Levine (a2) (a3), Robert J. Finton (a4), Charles T. Ingram (a5), Kathleen B. Gay (a6), Gerda Tapelband (a1), J. David Smith (a3) and William R. Jarvis (a1)...

Abstract

Objective:

To estimate the extent of, and evaluate risk factors for, elevated carboxyhemoglobin levels among patients undergoing general anesthesia and to identify the source of carbon monoxide.

Design:

Matched case-control study to measure carboxyhemoglobin levels.

Setting:

Large academic medical center.

Participants:

45 surgical patients who underwent general anesthesia.

Results:

Case-patients were more likely than controls to undergo surgery on Monday or Tuesday (10/15 vs 7/30; matched odds ratio [mOR], 7.7; 95% confidence interval [CI95], 1.8-34; P=.01), in one particular room (7/15 vs 4/30; mOR, 8.5; CI95, 1.5-48; P=.03) or in a room that was idle for ≥24 hours (11/15 vs 1/30; mOR, 95.5; CI95, 8.0-1,138; P≤.001). In a multivariate model, only rooms, and hence the anesthesia equipment, that were idle for ≥24 hours were independently associated with elevated intraoperative carboxyhemoglobin levels (OR, 22.4; CI95, 1.5-338; P=.025). Moreover, peak carboxyhemoglobin levels were correlated with the length of time that the room was idle (r=0.7; CI95, 0.3-0.9). Carbon monoxide was detected in the anesthesia machine outflow during one case-procedure. No contamination of anesthesia gas supplies or CO2 absorbents was found.

Conclusions:

Carbon monoxide may accumulate in anesthesia circuits left idle for ≥24 hours as a result of a chemical interaction between CO2-absorbent granules and anesthetic gases. Patients administered anesthesia through such circuits may be at increased risk for elevated carboxyhemoglobin levels during surgery or the early postoperative period.

Copyright

Corresponding author

Division of Healthcare Quality Program, Centers for Disease Control and Prevention, MS E-68, 1600 Clifton Rd NE, Atlanta, GA 30333

References

Hide All
1.Firth, JB, Stuckey, RE. Decomposition of trichloroethylene in closed circuit anesthesia. Lancet 1945;1:814816.
2.Petty, C. Carbon dioxide absorption. In: Petty, C, ed. The Anesthesia Machine. New York, NY: Churchill Livingstone, Inc; 1987:6779.
3.Middleton, V, van Poznak, A, Artusio, JF JrSmith, SM. Carbon monoxide accumulation in closed circuit anesthesia systems. Anesthesiology 1965;26:715719.
4.Moon, R, Ingram, C, Brunner, E, Meyer, A. Spontaneous generation of carbon monoxide within anesthesia circuits. Anesthesiology 1991;75:A873. Abstract.
5.Fang, ZX, Eger, EI 2ndLaster, MJ, Chortkoff, BS, Kandel, L, Ionescu, P. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme. Anesth Analg 1995;80:11871193.
6.Berry, PD, Sessler, DI, Larson, MD. Severe carbon monoxide poisoning during desflurane anesthesia. Anesthesiology 1999;90:613616.
7.Baxter, PJ, Garton, K, Kharasch, ED. Mechanistic aspects of carbon monoxide formation from volatile anesthetics. Anesthesiology 1998;89:929941.
8.Frink, EJ JrNogami, WM, Morgan, SE, Salmon, RC. High carboxyhemo-globin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents. Anesthesiology 1997;87:308316.
9.Baxter, PJ, Kharasch, ED. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Anesthesiology 1997;86:10611065.
10.Berry, PD, Sessler, DI, Larson, MD. Severe carbon monoxide poisoning during desflurane anesthesia. Anesthesiology 1999;90:613616.
11.Woehlck, HJ, Dunning, M 3rdConnolly, LA. Reduction in the incidence of carbon monoxide exposures in humans undergoing general anesthesia. Anesthesiology 1997;87:228234.
12.Landry, A. Carbon monoxide poisoning: sources, manifestations, treatment. Respiratory Therapy 1985;5:2325.
13.Thom, SR, Keim, LW. Carbon monoxide poisoning: a review. Epidemiology, pathophysiology, clinical findings, and treatment options including hyperbaric oxygen therapy. J Toxicol Clin Toxicol 1989;27:141145.
14.Graves, EJ, Kozak, LJ. National hospital discharge survey: annual summary, 1996. Vital Health Stat 13.1999 (140):i-iv, 146.
15.Barker, SJ, Tremper, KK. The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous pO2. Anesthesiology 1987;66:667669.
16.Vegfors, M, Lennmarken, C. Carboxyhaemoglobinaemia and pulse oximetry. Br J Anaesth 1991;66:625626.
17.Woehlick, HJ, Dunning, M, Nithipatikom, K, Kuller, AH, Henry, DW. Mass spectrometry provides warning of carbon monoxide exposure via trifluoromethane. Anesthesiology 1996;84:14891493.
18.Centers for Disease Control. Epidemiological notes and reports elevated intraoperative blood carboxyhemoglobin levels in surgical patients—Georgia, Illinois, and North Carolina. MMWR 1991;40:248249.
19.National Institute for Occupational Safety and Health. NIOSH Pocket Guide to Chemical Hazards. Atlanta, GA: US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention; 1994.

Anesthesia-Associated Carbon Monoxide Exposures Among Surgical Patients

  • Michele L. Pearson (a1), William C. Levine (a2) (a3), Robert J. Finton (a4), Charles T. Ingram (a5), Kathleen B. Gay (a6), Gerda Tapelband (a1), J. David Smith (a3) and William R. Jarvis (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed