Skip to main content Accessibility help

An Antimicrobial Stewardship Program Based on Systematic Infectious Disease Consultation in a Rehabilitation Facility

  • Sara Tedeschi (a1), Filippo Trapani (a1), Maddalena Giannella (a1), Francesco Cristini (a1), Fabio Tumietto (a1), Michele Bartoletti (a1), Annalisa Liverani (a2), Salvatore Pignanelli (a3), Luisa Toni (a2), Roberto Pederzini (a2), Augusto Cavina (a2) and Pierluigi Viale (a1)...



To assess the impact of an antimicrobial stewardship program (ASP) on antibiotic consumption, Clostridium difficile infections (CDI), and antimicrobial resistance patterns in a rehabilitation hospital.


Quasi-experimental study of the periods before (from January 2011 to June 2012) and after (from July 2012 to December 2014) ASP implementation.


150-bed rehabilitation hospital dedicated to patients with spinal-cord injuries.


Beginning in July 2012, an ASP was implemented based on systematic bedside infectious disease (ID) consultation and structural interventions (ie, revision of protocols for antibiotic prophylaxis and education focused on the appropriateness of antibiotic prescriptions). Antibiotic consumption, occurrence of CDI, and antimicrobial resistance patterns of selected microorganisms were compared between periods before and after the ASP implementation.


Antibiotic consumption decreased from 42 to 22 defined daily dose (DDD) per 100 patient days (P<.001). The main reductions involved carbapenems (from 13 to 0.4 DDD per 100 patient days; P=.01) and fluoroquinolones (from 11.8 to 0.99 DDD per 100 patient days; P=.006), with no increases in mortality or length of stay. The incidence of CDI decreased from 3.6 to 1.2 cases per 10,000 patient days (P=.001). Between 2011 and 2014, the prevalence of extensively drug-resistant (XDR) strains decreased from 55% to 12% in P. aeruginosa (P<.001) and from 96% to 73% in A. baumannii (P=.03). The prevalence of ESBL-producing strains decreased from 42% to 17% in E. coli (P=.0007) and from 62% to 15% in P. mirabilis (P=.0001). In K. pneumoniae, the prevalence of carbapenem-resistant strains decreased from 42% to 17% (P=.005), and the prevalence of in methicillin-resistant S. aureus strains decreased from 77% to 40% (P<.0008).


An ASP based on ID consultation was effective in reducing antibiotic consumption without affecting patient outcomes and in improving antimicrobial resistance patterns in a rehabilitation hospital.

Infect Control Hosp Epidemiol. 2016;1–7


Corresponding author

Address correspondence to Sara Tedeschi, Infectious Disease Unit, Teaching Hospital S. Orsola-Malpighi, via Massarenti, 11, 40138 Bologna Italy (


Hide All

PREVIOUS PRESENTATION. The findings reported in this article were presented as a poster during the 26th European Congress of Clinical Microbiology and Infectious Diseases, April 12, 2016, Amsterdam, Netherlands.



Hide All
1. Dellit, TH, Owens, RC, McGowan, JE Jr, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 2007;44:159177.
2. Wagner, B, Filice, GA, Drekonja, D, et al. Antimicrobial stewardship programs in inpatient hospital settings: a systematic review. Infect Control Hosp Epidemiol 2014;35:12091228.
3. Davey, P, Brown, E, Charani, E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev 2013;4:CD003543.
4. Pope, SD, Dellit, TH, Owens, RC, Hooton, TM, Infectious Diseases Society of A, Society for Healthcare Epidemiology of A. Results of survey on implementation of Infectious Diseases Society of America and Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Infect Control Hosp Epidemiol 2009;30:9798.
5. Giannella, M, Tedeschi, S, Bartoletti, M, Viale, P. Prevention of infections in nursing homes: antibiotic prophylaxis versus infection control and antimicrobial stewardship measures. Expert Rev Anti-infect Ther 2016;14:219230.
6. Schuts, EC, Hulscher, ME, Mouton, JW, et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. The Lancet 2016. doi:10.1016/S1473-3099(16)00065-7.
7. Montgomerie, JZ. Infections in patients with spinal cord injuries. Clin Infect Dis 1997;25:12851290; quiz 1291–1282.
8. Evans, CT, LaVela, SL, Weaver, FM, et al. Epidemiology of hospital-acquired infections in veterans with spinal cord injury and disorder. Infect Control Hosp Epidemiol 2008;29:234242.
9. Mylotte, JM, Kahler, L, Graham, R, Young, L, Goodnough, S. Prospective surveillance for antibiotic-resistant organisms in patients with spinal cord injury admitted to an acute rehabilitation unit. Am J Infect Control 2000;28:291297.
10. Mylotte, JM, Graham, R, Kahler, L, Young, L, Goodnough, S. Epidemiology of nosocomial infection and resistant organisms in patients admitted for the first time to an acute rehabilitation unit. Clin Infect Dis 2000;30:425432.
11. Evans, CT, Rogers, TJ, Burns, SP, Lopansri, B, Weaver, FM. Knowledge and use of antimicrobial stewardship resources by spinal cord injury providers. PM & R 2011;3:619623.
12. ATC Index with DDDs. World Health Organization Collaborating Centre for Drug Statistics Methodology website. Published 2014. Accessed April 2, 2016.
13. Pignanelli, S, Zaccherini, P, Schiavone, P, Nardi Pantoli, A, Pirazzoli, S, Nannini, R. In vitro antimicrobial activity of several antimicrobial agents against Escherichia coli isolated from community-acquired uncomplicated urinary tract infections. Eur Rev Med Pharmacol Sci 2013;17:206209.
14. Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268281.
15. Barlam, TF, Cosgrove, SE, Abbo, LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016;62:e51e77.
16. Fleming, A, Browne, J, Byrne, S. The effect of interventions to reduce potentially inappropriate antibiotic prescribing in long-term care facilities: a systematic review of randomised controlled trials. Drugs Aging 2013;30:401408.
17. Jump, RL, Olds, DM, Seifi, N, et al. Effective antimicrobial stewardship in a long-term care facility through an infectious disease consultation service: keeping a LID on antibiotic use. Infect Control Hosp Epidemiol 2012;33:11851192.
18. Evans, CT, Rogers, TJ, Weaver, FM, Burns, SP. Providers’ beliefs and behaviors regarding antibiotic prescribing and antibiotic resistance in persons with spinal cord injury or disorder. J Spinal Cord Med 2011;34:1621.
19. Luzzaro, F, Mezzatesta, M, Mugnaioli, C, et al. Trends in production of extended-spectrum beta-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J Clin Microbiol 2006;44:16591664.
20. Mylotte, JM, Graham, R, Kahler, L, Young, BL, Goodnough, S. Impact of nosocomial infection on length of stay and functional improvement among patients admitted to an acute rehabilitation unit. Infect Control Hosp Epidemiol 2001;22:8387.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed