Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-b5g75 Total loading time: 0.563 Render date: 2021-04-11T18:35:35.156Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Evaluation of a Safety Resheathable Winged Steel Needle for Prevention of Percutaneous Injuries Associated With Intravascular-Access Procedures Among Healthcare Workers

Published online by Cambridge University Press:  02 January 2015

Meryl H. Mendelson
Affiliation:
Departments of Medicine and Infection Control, Division of Infectious Diseases, Mount Sinai School of Medicine and Mount Sinai Medical Center, New York, New York
Bao Ying Lin-Chen
Affiliation:
Departments of Medicine and Infection Control, Division of Infectious Diseases, Mount Sinai School of Medicine and Mount Sinai Medical Center, New York, New York
Robin Solomon
Affiliation:
Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine and Mount Sinai Medical Center, New York, New York
Eileen Bailey
Affiliation:
Department of Nursing, Division of Infectious Diseases, Mount Sinai School of Medicine and Mount Sinai Medical Center, New York, New York
Gene Kogan
Affiliation:
Department of Infection Control, Division of Infectious Diseases, Mount Sinai School of Medicine and Mount Sinai Medical Center, New York, New York
James Goldbold
Affiliation:
Department of Community and Preventive Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine and Mount Sinai Medical Center, New York, New York

Abstract

Objective:

To compare the percutaneous injury rate associated with a standard versus a safety resheathable winged steel (butterfly) needle.

Design:

Before-after trial of winged steel needle injuries during a 33-month period (19-month baseline, 3-month training, and 11-month study intervention), followed by a 31-month poststudy period.

Setting:

A 1,190-bed acute care referral hospital with inpatient and outpatient services in New York City.

Participants:

All healthcare workers performing intravascular-access procedures with winged steel needles.

Intervention:

Safety resheathable winged steel needle.

Results:

The injury rate associated with winged steel needles declined from 13.41 to 6.41 per 100,000 (relative risk [RR], 0.48; 95% confidence interval [CI95], 0.31 to 0.73) following implementation of the safety device. Injuries occurring during or after disposal were reduced most substantially (RR 0.15; CI95, 0.06 to 0.43 Safety winged steel needle injuries occurred most often before activation of the safety mechanism was appropriate (39%); 32% were due to the user choosing not to activate the device, 21% occurred during activation, and 4% were due to improper activation. Preference for the safety winged steel needle over the standard device was 63%. The safety feature was activated in 83% of the samples examined during audits of disposal containers. Following completion of the study, the safety winged steel needle injury rate (7.29 per 100,000) did not differ significantly from the winged steel needle injury rate during the study period.

Conclusion:

Implementation of a safety resheathable winged steel needle substantially reduced injuries among healthcare workers performing vascular-access procedures. The residual risk of injury associated with this device can be reduced further with increased compliance with proper activation procedures.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Centers for Disease Control and Prevention. Immunization of health care workers: recommendations of the Advisory Committee on Immunization Practices (ACIP) and the Hospital Infection Control Practices Advisory Committee (HICPAC). MMWR 1997;46(RR-18):142.Google Scholar
2.Alter, MJ. The epidemiology of acute and chronic hepatitis C. Clinics in Liver Disease 1997;1:559569.CrossRefGoogle ScholarPubMed
3.Centers for Disease Control and Prevention. Recommendations for prevention and control of hepatitis C virus (HCV) infection and HCV-related chronic disease. MMWR 1998;47(RR-19):139.Google ScholarPubMed
4.Tokars, JI, Marcus, R, Culver, DH, et al. Surveillance of HIV infection and zidovudine use among health care workers after occupational exposure to HIV-infected blood. Ann Intern Med 1993;118:913919.CrossRefGoogle ScholarPubMed
5.Henderson, DK, Fahey, BJ, Willy, M, et al. Risk for occupational transmission of human immunodeficiency virus type 1 (HIV-1) associated with clinical exposures: a prospective evaluation. Ann Intern Med 1990;113:740746.CrossRefGoogle Scholar
6.Gerberding, JL. Incidence and prevalence of human immunodeficiency virus, hepatitis B virus, hepatitis C virus, and cytomegalovirus among health care personnel at risk for blood exposure: final report from a longitudinal study. J Infect Dis 1994;170:14101417.CrossRefGoogle ScholarPubMed
7.Ippolito, G, Puro, V, De Carli, G, Italian Study Group on Occupational Risk of HPV Infection. The risk of occupational human immunodeficiency virus infection in health care workers: Italian Multicenter Study. Arch Intern Med 1993;153:14511458.CrossRefGoogle Scholar
8. Anonymous. HIV seroconversion after occupational exposure despite early prophylactic zidovudine therapy. Lancet 1993;341:10771078.CrossRefGoogle ScholarPubMed
9.Lot, F, Abiteboul, D. Infections professionnelles par le V.I.N. en France chez le personnel de sante: le point au 30 juin 1995. Bulliten Epidemiologique Hebdomadaire (Paris) 1995.Google Scholar
10.Perdue, B, Wolderufael, D, Mellors, J, et al. HIV-1 transmission by a needlestick injury despite rapid initiation of four-drug postexposure prophylaxis. Presented at the 76th Conference on Retroviruses and Opportunistic Infections; January 31-February 4, 1999; Chicago, IL Abstract 210.Google Scholar
11.Beltrami, EM, Luo, C-C, Dela Torre, N, Cardo, DM. HIV transmission after an occupational exposure despite postexposure prophylaxis with a combination drug regimen. Presented at the 4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections in conjunction with the 10th Annual Meeting of the Society for Healthcare Epidemiology of America; March 5-9,2000; Atlanta, GA.Google Scholar
12.Beltrami, EM, Cheingsong, R, Respess, R, Cardo, DM, the Occupational HIV Exposure Study Group, CDC. Antiretroviral drug resistance in HIV-infected source patients for occupational exposures to healthcare workers. Presented at the 4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections in conjunction with the 10th Annual Meeting of the Society for Healthcare Epidemiology of America; March 5-9, 2000; Atlanta, GA.Google Scholar
13.Tack, PC, Bremer, JW, Harris, AA, Landay, AL, Kessler, HA, Kuritzkes, DR. Genotypic analysis of HIV-1 isolates to identify antiretroviral resistance mutations from source patients involved in health care worker occupational exposures. JAMA 1999;281:10851086.CrossRefGoogle Scholar
14.Department of Labor, Occupational Safety and Health Administration. Occupational exposure to bloodborne pathogens: final rule. Federal Register 1991;56:6417564182.Google ScholarPubMed
15. Pub L No. 106430, Needlestick Safety and Prevention Act (November 6, 2000).Google Scholar
16.Department of Labor, Occupational Safety and Health Administration. Occupational exposure to bloodborne pathogens; needlestick and other sharps injuries: final rule. Federal Register 2001;66:53185325.Google ScholarPubMed
17.Cardo, DM, Culver, DH, Ciesielski, CA. et al. A case-control study of HIV seroconversion in health care workers after percutaneous exposure. N Engl J Med 1997;337:14851490.CrossRefGoogle Scholar
18.Centers for Disease Control and Prevention. Evaluation of safety devices for preventing percutaneous injuries among health-care workers during phlebotomy procedures: Minneapolis-St. Paul, New York City, and San Francisco, 1993-1995. MMWR 1997;46:2125.Google ScholarPubMed
19.Mendelson, MH. Incidence and prevalence of needlesticks: an urban university hospital perspective. In: Using Safer Needle Devices: The Time Is Now, Report of the National Committee on Safer Needle Devices. Arlington, TX: J & J Medical; 1998.Google Scholar
20.Cardo, D, Culver, D, Srivastava, P, the NaSH Surveillance Group. Results from first phase of the National Surveillance System for Health Care Workers. Presented at the 7th Annual Meeting of the Society for Healthcare Epidemiology of America; April 27-29, 1997; St. Louis, MO.Google Scholar
21.Agresti, A. Categorical Analysis. New York: John Wiley & Sons; 1990:5556.Google Scholar
22.Chiarello, L, Nagin, D, Laufer, F. Pilot Study of Needlestick Prevention Devices: Report to the Legislature. Albany, NY: New York State Department of Health; 1992.Google Scholar
23.Gershon, RRM, Pearse, L, Grimes, M, Flanagan, PA, Vlahov, D. The impact of multifocused interventions on sharps injury rates at an acute-care hospital. Infect Control Hosp Epidemiol 1999;20:806811.CrossRefGoogle Scholar
24.Billiet, LS, Parker, CR, Tanley, PC, Wallas, CH. Needlestick injury rate reduction during phlebotomy; a comparative study of two safety devices. Laboratory Medicine 1991;22:122123.CrossRefGoogle Scholar
25.Jagger, J. Reducing occupational exposure to bloodborne pathogens: where do we stand a decade later? Infect Control Hosp Epidemiol 1996;17:573575.CrossRefGoogle ScholarPubMed
26.Ippolito, G, De Carli, G, Puro, V, et al. Device-specific risk of needlestick injury in Italian health care workers. JAMA 1994;272:607610.CrossRefGoogle ScholarPubMed
27.Mendelson, MH, Chen, L, Solomon, R, Bailey, E, Kogan, G, McCarthy, D. Evaluation of a safety IV catheter. Presented at the 9th Annual Meeting of the Society for Healthcare Epidemiology of America; April 18-20, 1999; San Francisco, CA.Google Scholar
28.Mendelson, MH, Chen, L, Bailey, E, Finkelstein-Blond, L, Kogan, G. Evaluation of a safety IV catheter (IVC) (Becton Dickinson, Insyte Autoguard): final report. Presented at the 11th Annual Meeting of Society for Healthcare Epidemiology of America; March 31-April 1, 2001; Toronto, Ontario, Canada.Google Scholar
29.Centers for Disease Control and Prevention. Summary Report for Data Collected From June 1995 Through December 2000. Atlanta, GA: Centers for Disease Control and Prevention.Google Scholar
30.Centers for Disease Control and Prevention. Documented and possible occupationally acquired AIDS/HIV infection, by occupation. HIV/AIDS Surveillance Report. 2000; 12:24.Google Scholar
31.Ippolito, G, Puro, V, Heptonstall, J, Jagger, J, De Carli, G, Petrosillo, N. Occupational human immunodeficiency virus infection in health care workers: worldwide cases through September 1997. Clin Infect Dis 1999;28:365383.CrossRefGoogle Scholar
32.Campbell, SR, Srivastava, P, Williams, I, Alter, M, Cardo, D, NaSH Surveillance Group. Hepatitis C virus infection after occupational exposure. Presented at the 4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections and the 10th Annual Meeting of the Society for Healthcare Epidemiology of America; March 5-9, 2000; Atlanta, GA.Google Scholar
33.Chiarello, LA. Selection of needlestick prevention devices: a conceptual framework for approaching product evaluation. Am J Infect Control 1995;25:386395.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 17 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evaluation of a Safety Resheathable Winged Steel Needle for Prevention of Percutaneous Injuries Associated With Intravascular-Access Procedures Among Healthcare Workers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evaluation of a Safety Resheathable Winged Steel Needle for Prevention of Percutaneous Injuries Associated With Intravascular-Access Procedures Among Healthcare Workers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evaluation of a Safety Resheathable Winged Steel Needle for Prevention of Percutaneous Injuries Associated With Intravascular-Access Procedures Among Healthcare Workers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *