Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-qcsxw Total loading time: 0.284 Render date: 2022-08-17T08:28:56.455Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection

Published online by Cambridge University Press:  31 July 2018

William A. Rutala*
Affiliation:
Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, United States Division of Infectious Diseases, UNC School of Medicine, Chapel Hill, North Carolina, United States
Hajime Kanamori
Affiliation:
Division of Infectious Diseases, UNC School of Medicine, Chapel Hill, North Carolina, United States Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University, Sendai, Japan
Maria F. Gergen
Affiliation:
Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, United States
Lauren P. Knelson
Affiliation:
Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University Medical Center, Durham, North Carolina, United States
Emily E. Sickbert-Bennett
Affiliation:
Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, United States Division of Infectious Diseases, UNC School of Medicine, Chapel Hill, North Carolina, United States
Luke F. Chen
Affiliation:
Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University Medical Center, Durham, North Carolina, United States
Deverick J. Anderson
Affiliation:
Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University Medical Center, Durham, North Carolina, United States
Daniel J. Sexton
Affiliation:
Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University Medical Center, Durham, North Carolina, United States
David J. Weber
Affiliation:
Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, United States Division of Infectious Diseases, UNC School of Medicine, Chapel Hill, North Carolina, United States
*
Author for correspondence: William A. Rutala, PhD, MPH, CIC, Division of Infectious Diseases, UNC School of Medicine, Bioinformatics Building, CB#7030, 130 Mason Farm Road, Chapel Hill, NC 27514-7030. E-mail: brutala@med.unc.edu

Abstract

In this prospective study, we monitored 4 epidemiologically important pathogens (EIPs): methicillin-resistane Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Clostridium difficile, and multidrug-resistant (MDR) Acinetobacter to assess the effectiveness of 3 enhanced disinfection strategies for terminal room disinfection against standard practice. Our data demonstrated that a decrease in room contamination with EIPs of 94% was associated with a 35% decrease in subsequent patient colonization and/or infection.

Type
Concise Communication
Copyright
© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Cite this article: Rutala WA, et al. (2018). Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection. Infection Control & Hospital Epidemiology. 2018, 39, 1118–1121. doi: 10.1017/ice.2018.165

References

1. Otter, JA, Yezli, S, Salkeld, JA, French, GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control 2013;41:S6S11.CrossRefGoogle ScholarPubMed
2. Donskey, CJ. Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control 2013;41:S12S19.CrossRefGoogle ScholarPubMed
3. Rutala, WA, Weber, DJ. Monitoring and improving the effectiveness of surface cleaning and disinfection. Am J Infect Control 2016;44:e69e76.CrossRefGoogle ScholarPubMed
4. Carling, P. Methods for assessing the adequacy of practice and improving room disinfection. Am J Infect Control 2013;41:S20S25.CrossRefGoogle ScholarPubMed
5. Weber, DJ, Rutala, WA, Anderson, DJ, Chen, LF, Sickbert-Bennett, EE, Boyce, JM. Effectiveness of UV devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials. Am J Infect Control 2016;44:e77e84.CrossRefGoogle Scholar
6. Anderson, DJ, Chen, LF, Weber, DJ, et al. The benefits of enhanced terminal room (BETR) disinfection study: a prospective, cluster randomized, multicenter, crossover study to evaluate the impact of enhanced terminal room disinfection on acquisition and infection caused by multidrug-resistant organisms. Lancet 2017;389:805814.CrossRefGoogle Scholar
7. Magill, SS, Edwards, JR, Bamberg, W, Beldavs, ZG, Dumyati, G, et al. Multistate point-prevalence survey of healthcare-associated infections. New Engl J Med 2014;370:11981208.CrossRefGoogle Scholar
8. Chen, LF, Knelson, L, Gergen, M, et al. A prospective study of transmission of multi-drug resistant organism (MDRO) between environmental sites and hospital patients-The TransFER study. Submitted for publication.Google Scholar
9. Huslage, K, Rutala, WA, Gergen, MF, Sickbert-Bennett, EE, Weber, DJ. Microbial assessment of high-, medium-, and low-touch hospital room surfaces. Infect Control Hosp Epidemiol 2013;34:211212.CrossRefGoogle ScholarPubMed
26
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *