Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T03:01:46.387Z Has data issue: false hasContentIssue false

I–O Psychology and Progressive Research Programs on Intelligence

Published online by Cambridge University Press:  07 January 2015

Jonas W. B. Lang*
Maastricht University
Paul D. Bliese
Rockville, Maryland
E-mail:, Address: Department of Work and Social Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Copyright © Society for Industrial and Organizational Psychology 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs. Psychological Bulletin, 131, 3060. doi: 10.1037/0033-2909.131.1.30.Google Scholar
Bartholomew, D. J., Deary, I. J., & Martin, L. (2009). A new lease for Thomson's bonds model of intelligence. Psychological Review, 116, 567579. doi: 10.1037/a0016262.Google Scholar
Beauducel, A., & Kersting, M. (2002). Fluid and crystallized intelligence and the Berlin Model of Intelligence Structure (BIS). European Journal of Psychological Assessment, 18, 97112. doi: 10.1027/ 1015-5759.18.2.97.Google Scholar
Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “choking” under pressure in math. Psychological Science, 16, 101105. doi: 10.1111/j.0956-7976. 2005.00789.x.Google Scholar
Beilock, S. L., & DeCaro, M. S. (2007). From poor performance to success under stress: Working memory, strategy selection, and mathematical problem solving under pressure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 983998. doi: 10.1037/0278-7393.33.6.983.Google Scholar
Bliese, P. D., Chan, D., & Ployhart, R. (2007). Multilevel methods and statistics: Emerging issues and future directions. Organizational Research Methods, 10, 551563. doi: 10.1177/10944281073 01102.Google Scholar
Brody, N. (2003). Construct validation of the Sternberg Triarchic Abilities Test: Comment and reanalysis. Intelligence, 31, 319329. doi: 10.1016/S0160-2896(01)00087-3.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press. Google Scholar
Deary, I. J. (2002). g and cognitive elements of information processing: An agnostic view. In Sternberg, R. J. & Grigorenko, E. L. (Eds.), The general factor of intelligence (pp. 151182). Mahwah, NJ: Erlbaum. Google Scholar
Dickens, W. T. (2007, November 19). What is g? Paper presented at the second Thomas S. Schelling Symposium, University of Maryland, College Park, MD. Retrieved from Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457460. doi: 10.1126/science.289.5478.457.Google Scholar
Gustafsson, J.-E., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28, 407434. doi: 10.1207/s15327906mbr2804_2.Google Scholar
Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2, 4154. doi: 10.1007/ BF02287965.Google Scholar
Humphreys, L. G. (1981). The primary mental ability. In Friedman, M. P., Das, J. R., & O’Connor, N. (Eds.), Intelligence and learning (pp. 87102). New York, NY: Plenum. Google Scholar
Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 19. doi: 10.1207/S15327906MBR3501_1.Google Scholar
Johnson, J. W., & LeBreton, J. M. (2004). History and use of relative importance indices in organizational research. Organizational Research Methods, 7, 238257. doi: 10.1177/1094428104266510.Google Scholar
Johnson, W. & Bouchard, T. J. Jr. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393416. doi: 10.1016/ j.intell.2004.12.002.Google Scholar
Kane, M. J., & Engle, R. W. (2000). Working memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 333358. doi: 10.10371/ 0278-7393.26.2.336.Google Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671. doi: 10.3758/ BF03196323.Google Scholar
Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 6671. doi: 10.1037/0033-2909. 131.1.66.Google Scholar
Lang, J. W. B., & Bliese, P. D. (2009). General mental ability and two types of adaptation to unforeseen change: Applying discontinuous growth models to the task-change paradigm. Journal of Applied Psychology, 94, 411428. doi: 10.1037/a0013803.Google Scholar
Lang, J. W. B., Kersting, M., Hülsheger, U. R., & Lang, J. (2010). General mental ability, narrower cognitive abilities, and job performance: The perspective of the nested-factors model of cognitive abilities. Personnel Psychology, 63, 595640. doi: 10.1111/j.1744-6570.2010.01182.x.Google Scholar
LePine, J. A., Colquitt, J. A., & Erez, A. (2000). Adaptability of changing task contexts: Effects of general cognitive ability, conscientiousness, and openness to experience. Personnel Psychology, 53, 563593. doi:10.1111/j.1744-6570.2000.tb 00214.x.Google Scholar
van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Bulletin, 113, 842861. doi: 10.1037/0033-295X.113.4.842.Google Scholar
McHenry, J. J., Hough, L. M., Toquam, J. L., Hanson, M. A., & Ashworth, S. (1990). Project A validity results: The relationship between predictor and criterion domains. Personnel Psychology, 43, 335354. doi:10.111/j.1744-6570.1990. tb01562.x.Google Scholar
Oberauer, K., Schulze, R., Wilhelm, O., & Süß, H.-M. (2005). Working memory and intelligence—Their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 6165. doi: 10.1037/0033-2909. 131.1.61.Google Scholar
Ree, M. J., Earles, J. A., & Teachout, M. S. (1994). Predicting job performance: Not much more than g . Journal of Applied Psychology, 79, 518524. doi: 10.1037/0021-9010.79.4.518.Google Scholar
Ricks, T. R., Turley-Ames, K. J., & Wiley, J. (2007). Effects of working memory capacity on mental set due to domain knowledge. Memory & Cognition, 35, 14561462. doi: 10.3758/BF03193615.Google Scholar
Scherbaum, C. A., Goldstein, H. W., Yusko, K. P., Ryan, R., & Hanges, P. J. (2012). Intelligence 2.0: Reestablishing a research program on g in I–O psychology. Industrial and Organizational Psychology: Perspectives on Science and Practice, 5, 128148.Google Scholar
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York, NY: Oxford University Press. Google Scholar
Spearman, C. (1904). “General intelligence,” objectively determined and measured. American Journal of Psychology, 15, 201292. doi: 10.2307/ 1412107.Google Scholar
Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago Press. Google Scholar
Visser, B. A., Ashton, M. C., & Vernon, P. A. (2006). Beyond g: Putting multiple intelligences theory to the test. Intelligence, 34, 487502. doi:10.1016/j. intell.2006.02.004.Google Scholar
Yung, Y.-F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113128. doi:10.1007/ BF02294531.Google Scholar