Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T13:55:31.116Z Has data issue: false hasContentIssue false

Supernovae and Stellar Mass Loss

Published online by Cambridge University Press:  30 March 2016

R. A. Chevalier*
Affiliation:
Department of Astronomy University of Virginia, P. O. Box 3818Charlottesville, VA 22903, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Type I supernovae can be modeled as the carbon deflagration of white dwarfs and Type II supernovae as the explosions of massive stars with hydrogen envelopes. The massive stars at the ends of their lives are expected to be red supergiants, which are observed to have slow, dense winds. The interaction of the supernova kinetic energy and radiation with the circumstellar gas gives rise to observational phenomena at a range of wavelengths. Additional phenomena, such as a scattered light echo, are predicted. While the light from a Type II supernova near maximum light is probably from energy deposited in the initial explosion, there is now good evidence that the radioactive decay of 56Co powers the emission at late times. It was been noted that the explosions of massive stars without hydrogen envelopes would be quite unlike normal Type II supernovae. There is now good evidence for such explosions – SN1985f and the class of peculiar Type I supernovae. It is suggested that these supernovae be called Type III with the spectroscopic definition of a) no H lines and b) broad [01] lines at late times. That not all very massive star explosions are of this type is indicated by SN1961v, which was probably a very massive explosion, but in which hydrogen was present.

Type
Joint Discussions
Copyright
Copyright © Reidel 1986

References

Abbott, D. C., Beiging, J. H., Churchwell, E., and Torres, A. V. 1985, preprint.Google Scholar
Axelrod, T. 1980, Ph.D. Thesis, University of California at Santa Cruz, UCRL-52994.Google Scholar
Barbon, R., Cappellaro, E., and Turatto, M. 1984, Astr. Ap., 135, 27.Google Scholar
Bartel, N., Rogers, A. E. E., Shapiro, I. I., Gorenstein, M. V., Gwinn, C. R., Marcaide, J. M., and Weiler, K. W. 1985, Nature, 318, 25.CrossRefGoogle Scholar
Begelman, M. C. and Sarazin, C. L. 1985, preprint.Google Scholar
Bond, J. R., Arnett, W. D., and Carr, B. J. 1984, Ap. J., 280, 825.CrossRefGoogle Scholar
Branch, D., Falk, S. W., McCall, M. L., Rybski, P., Uomoto, A. K., and Wills, B. J. 1981, Ap. J., 244, 780.CrossRefGoogle Scholar
Branch, D. and Cowan, J. J. 1985, Ap. J. (Letters), 297, L33.CrossRefGoogle Scholar
Branch, D. and Greenstein, J. L. 1971, Ap. J., 167, 89.CrossRefGoogle Scholar
Cahen, S., Schaeffer, R., and Cassé, M. 1986, in Nucleosynthesis and its Implications on Nuclear Particle Physics, D. Reidel, p. 243.CrossRefGoogle Scholar
Canizares, C. R., Kriss, G. A., and Feigelson, E. E. 1982, Ap. J. (Letters), 253, L17.CrossRefGoogle Scholar
Chevalier, R. A. 1976, Ap. J., 208, 826.CrossRefGoogle Scholar
Chevalier, R. A. 1981a, Fund. Cosmic Phys., 7, 1.Google Scholar
Chevalier, R. A. 1981b, Ap. J., 246, 267.CrossRefGoogle Scholar
Chevalier, R. A. 1982, Ap. J., 259, 302.CrossRefGoogle Scholar
Chevalier, R. A. 1984a, Ann. N.Y. Acad. Sci., 422, 215.CrossRefGoogle Scholar
Chevalier, R. A. 1984b, Ap. J. Letters, 285, L63.CrossRefGoogle Scholar
Chevalier, R. A. 1985, Ap. J., submitted.Google Scholar
Dwek, E. 1983, Ap. J., 274, 175.CrossRefGoogle Scholar
Elias, J. H., Matthews, K., Neugebauer, G., and Persson, S. E. 1985, Ap. J., 296, 379.CrossRefGoogle Scholar
Fesen, R. A. 1985, Ap. J. (Letters), 297, L29.CrossRefGoogle Scholar
Filippenko, A. V. and Sargent, W. L. W. 1985, Nature, 316, 407.CrossRefGoogle Scholar
Fransson, C. 1984, Astr. Ap., 333, 264.Google Scholar
Fransson, C. 1985, in I.A.U. Colloquium No. 89 “Radiation Hydro-dynamics,” ed. Mihalas, D. and Winkler, K. H., Springer, in press.Google Scholar
Fransson, C., Benvenuti, P., Gordon, C., Hempe, K., Palumbo, G. G. C., Panagia, N., Reimers, D., and Wamstecker, W. 1984, Astr. Ap. 132, 1.Google Scholar
Graham, J. R., Meikle, W. P. S., Allen, D. A., Longmore, A. J., and Williams, P. M. 1985, M.N.R.A.S., in press.Google Scholar
Iben, I. Jr. and Tutukov, A. V. 1984, Ap. J. Suppl., 54, 335.CrossRefGoogle Scholar
Kirshner, R. P. and Kwan, J. 1975, Ap. J., 197, 415.CrossRefGoogle Scholar
Kirshner, R. P. and Oke, J. B. 1975, Ap. J., 200, 574.CrossRefGoogle Scholar
Lundqvist, P. and Fransson, C. 1985, preprint.Google Scholar
Maeder, A. and Lequeux, J. 1982, Astr. Ap., 114, 409.Google Scholar
Meyerott, R. E. 1980, Ap. J., 239, 257.CrossRefGoogle Scholar
Minkowski, R. 1939, Ap. J., 89, 156.CrossRefGoogle Scholar
Nomoto, K. 1985, Ann. N.Y. Acad. Sci., in press.Google Scholar
Oke, J. B. and Searle, L. 1974, Ann. Rev. Astr. Ap., 12, 315.CrossRefGoogle Scholar
Panagia, N. 1985, in Supernovae as Distance Indicators, ed. Bartel, N., Springer, p. 14.CrossRefGoogle Scholar
Panagia, N., Sramek, R. A., and Weiler, K. W. 1985, Ap. J. (Letters), in press.Google Scholar
Sandage, A. and Tammann, G. A. 1974, Ap. J., 194, 559.CrossRefGoogle Scholar
Shklovsky, I. S. 1968, Supernovae, Wiley.Google Scholar
Sramek, R. A., Panagia, N., and Weiler, K. W. 1984, Ap. J. Letters, 285, L59.CrossRefGoogle Scholar
Uomoto, A. and Kirshner, R. P. 1985a, Astr. Ap., 149, L7.Google Scholar
Uomoto, A. and Kirshner, R. P. 1985b, Ap. J., submitted.Google Scholar
Utrobin, V. P. 1984, Ap. Space Sci., 98, 115.CrossRefGoogle Scholar
Weaver, T. A. and Woosley, S. E. 1980, Ann. N.Y. Acad. Sci., 336, 335.CrossRefGoogle Scholar
Weiler, K. W., Sramek, R. A., Panagia, N., van der Hulst, J. M., and Salvati, M. 1986, Ap. J., in press.Google Scholar
Wheeler, J. C. 1982, in Supernovae: A Survey of Current Research, ed. Rees, M. J. and Stoneham, R. J., Reidel, p. 167.CrossRefGoogle Scholar
Wheeler, J. C. and Levreault, R. 1985, Ap. J. (Letters), 294, L17.CrossRefGoogle Scholar
Zwicky, F. 1965 in Stars and Stellar Systems, Vol. VIII, ed. Allen, L. H. and McLaughlin, D. B., Chicago, p. 367.Google Scholar