Skip to main content Accessibility help
×
Home

How Massive is the Black Hole in M87?

  • S.K. Chakrabarti (a1)

Extract

Using the Faint Object Spectrograph (FOS) on Hubble Space Telescope (HST), Harms et al. (1994, H94) have recently reported the spectroscopy of central region of the elliptical galaxy M87. Ford et al. 1994 (hereafter F94), using Wide Field Planetary Camera-2 have imaged the region around the nucleus in Hα+[NII] and find an ionized disk with spiral structures of mainly two arms. From the kinematical argument, based on the Doppler shifts of several lines emitted from the disk, and assuming a Keplerian motion of the emitting gas, they conclude that the mass of the disk plus the nucleus: Mc (R < 18pc) = (2.4± 0.7)× 109M and the inclination angle of the disk with the line of sight is i = (42±5)°. However, if the bright spiral structures are real, and represent shocked region in the disk, we expect that the disk is strongly non-Keplerian and therefore the mass of the black hole must be higher than above estimation.

In the present contribution, we provide a complete description of the velocity field of the ionized disk and compute the shape of typical line profiles expected from various parts of the disk. Our analysis is based on the solution of a non-axisymmetric disk which includes two armed spiral density waves. We find a very good agreement between the theoretical and observed line profiles as regards to the Doppler shifts, line widths and the intensity ratios and estimate the mass of the black hole to be (4 ± 0.2) × 109M. Details of this work will be published elsewhere (Chakrabarti, 1995).

In a binary system with a thin accretion disk, the binary companion can induce two armed spiral shocks in the disk (e.g., Matsuda et al. 1987, Spruit 1987, Chakrabarti & Matsuda, 1992). In the case of active galaxies, a passing companion (or a globular cluster or a dwarf galaxy) which is more massive than the disk can induce the same effect.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How Massive is the Black Hole in M87?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How Massive is the Black Hole in M87?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How Massive is the Black Hole in M87?
      Available formats
      ×

Copyright

References

Hide All
Chakrabarti, S.K. 1990, ApJ 362, 406 (Paper l)
Chakrabarti, S.K. 1995, ApJ (in press)
Chakrabarti, S.K. & Matsuda, T. 1992, ApJ, 390, 639
Chakrabarti, S.K., & Wiita, P.J. 1993, ApJ, 411, 602
Chakrabarti, S.K., & Wiita, P.J. 1994 ApJ, (in press)
Ford, H.C., Harms, R.J., Tsvetanov, Z.I., Hartig, G.F., Dressel, L.L., Kriss, G.A., Davidsen, A.F., Bohlin, R., & Margon, B. 1994, ApJ Letters, (In press)
Harms, R.J., Ford, H.C., Tsvetanov, Z.I., Hartig, G.F., Dressel, L.L., Bohlin, R., Kriss, G.A., Davidsen, A.F., Margon, B. & Kochhar, A. 1994, ApJ Letters, (In press)
Matsuda, T., Inoue, M., Sawada, K., Shima, E., and Wakamatsu, K. 1987, MNRAS, 229, 295
Spruit, H.C. 1987, A & A, 184, 173

Related content

Powered by UNSILO

How Massive is the Black Hole in M87?

  • S.K. Chakrabarti (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.