Skip to main content Accessibility help
×
Home

The Galactic Chemical Evolution of Lithium

  • F. Matteucci (a1)

Extract

Under the assumption that the abundance of 7Li in Population II stars represents the primordial Li abundance (with perhaps a small contribution from GCR spallation) and that GCR spallation/fusion processes cannot contribute to more than ≃ 10 − 20% of the Li abundance observed in Pop. I stars and in the solar system, one must conclude that most of Li in Pop. I stars has a stellar origin.

Possible stellar Li producers are discussed: low mass AGB stars (2−5M) (C-stars), high mass AGB stars (5 - 8M), supernovae of type II (M > 10M⊙) and novae. The various problems connected with all of these sources are indicated: in particular, we discuss the Li production in AGB stars when evolutionary effects due to the metallicity are taken into account, and the fact that novae do not seem to be good candidate for Li production, as suggested by a recent nucleosynthesis study. We then calculate the yields from these stellar sources and predict the behavior of log N(Li) vs. [Fe/H] by means of a galactic chemical evolution model.

We conclude that, although a unique model cannot be found, due to the uncertainties still existing in the stellar nucleosynthesis, the most likely scenario is that Li is partly produced in type II supernovae (v-induced nucleosynthesis) and partly in massive AGB stars.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Galactic Chemical Evolution of Lithium
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Galactic Chemical Evolution of Lithium
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Galactic Chemical Evolution of Lithium
      Available formats
      ×

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed