Skip to main content Accessibility help
×
Home

Using the ROSS optical streak camera as a tool to understand laboratory experiments of laser-driven magnetized shock waves

  • Andy Liao (a1), Patrick Hartigan (a1), Gennady Fiksel (a2), Brent Blue (a3), Peter Graham (a4), John Foster (a4) and Carolyn Kuranz (a2)...

Abstract

Supersonic flows with high Mach number are ubiquitous in astrophysics. High-powered lasers also have the ability to drive high Mach number, radiating shock waves in laboratory plasmas, and recent experiments along these lines have made it possible to recreate analogs of high Mach-number astrophysical flows under controlled conditions. Streak cameras such as the Rochester optical streak system (ROSS) are particularly helpful in diagnosing such experiments, because they acquire spatially resolved measurements of the radiating gas continuously over a large time interval, making it easy to observe how any shock waves and ablation fronts present in the system evolve with time. This paper summarizes new ROSS observations of a laboratory analog of the collision of a stellar wind with an ablating planetary atmosphere embedded within a magnetosphere. We find good agreement between the observed ROSS data and numerical models obtained with the FLASH code, but only when the effects of optical depth are properly taken into account.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Using the ROSS optical streak camera as a tool to understand laboratory experiments of laser-driven magnetized shock waves
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Using the ROSS optical streak camera as a tool to understand laboratory experiments of laser-driven magnetized shock waves
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Using the ROSS optical streak camera as a tool to understand laboratory experiments of laser-driven magnetized shock waves
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: A. Liao, Rice University HBH 363, 6100 Main Street, Houston, TX 77005, USA. Email: Andy.Liao@rice.edu

References

Hide All
1. Hoeflich, P. Kumar, P. and Wheeler, J. C. (eds), Cosmic Explosions in Three Dimensions (Cambridge University Press, 2004).
2. Koenigl, A. Astrophys. J. Lett. 370, L39 (1991).
3. Kastner, J. H. Huenemoerder, D. P. Schulz, N. S. Canizares, C. R. and Weintraub, D. A. Astrophys. J. 567, 434 (2002).
4. Stelzer, B. and Schmitt, J. H. M. M. Astron. Astrophys. 418, 687 (2004).
5. Patterson, J. Proc. Astron. Soc. Pacific 106, 209 (1994).
6. Romero, G. E. Sunyaev, R. A. and Belloni, T. (eds), Jets at All Scales (Cambridge University Press, 2011).
7. Gaensler, B. M. and Slane, P. O. Ann. Rev. Astron. Astrophys. 44, 17 (2006).
8. Stevens, I. R. Blondin, J. M. and Pollock, A. M. T. Astrophys. J. 386, 265 (1992).
9. McKee, C. F. and Hollenbach, D. J. Ann. Rev. Astron. Astrophys. 18, 219 (1980).
10. van Buren, D. Noriega-Crespo, A. and Dgani, R. Astron. J. 110, 2914 (1995).
11. Hartigan, P. Frank, A. Foster, J. M. Wilde, B. H. Douglas, M. Rosen, P. A. Coker, R. F. and Blue, B. E. Astrophys. J. 736, 29 (2011).
12. López-Santiago, J. Miceli, M. del Valle, M. V. Romero, G. E. Bonito, R. Albacete-Colombo, J. F. Pereira, V. de Castro, E. and Damiani, F. Astrophys. J. Lett. 757, L6 (2012).
13. Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, 1989).
14. Calvet, N. and Gullbring, E. Astrophys. J. 509, 802 (1998).
15. Hartigan, P. and Wright, A. Astrophys. J. 811, 12 (2015).
16. Gotchev, O. V. Knauer, J. P. Chang, P.-Y. Jang, N. W. Shoupe III, M. J. Meyerhofer, D. D. and Betti, R. Rev. Sci. Instrum. 80, 043504 (2009).
17. Fryxell, B. Olson, K. Ricker, P. Timmes, F. X. Zingale, M. Lamb, D. Q. MacNeice, P. Rosner, R. Truran, J. W. and Tufo, H. Astrophys. J. Suppl. 131, 273 (2000).
18. Boehly, T. R. Brown, D. L. Craxton, R. S. Keck, R. L. Knauer, J. P. Kelly, J. H. Kessler, T. J. Kumpan, S. A. Loucks, S. J. Letzring, S. A. Marshall, F. J. McCrory, R. L. Morse, S. F. B. Seka, W. Soures, J. M. and Verdon, C. P. Opt. Commun. 133, 495 (1997).
19. Katz, J. Ross, J. S. Sorce, C. and Froula, D. H. J. Instr. 8, C12009 (2013).
20. Manuel, M. J.-E. Zylstra, A. B. Rinderknecht, H. G. Casey, D. T. Rosenberg, M. J. Sinenian, N. Li, C. K. Frenje, J. A. Séguin, F. H. and Petrasso, R. Rev. Sci. Instrum. 83, 063506 (2012).
21. Miller, J. E. Boehly, T. R. Melchior, A. Meyerhofer, D. D. Celliers, P. M. Eggert, J. H. Hicks, D. G. Sorce, C. M. Oertel, J. A. and Emmel, P. M. Rev. Sci. Instrum. 78, 034903 (2007).
22. Jaanimagi, P. A. Boni, R. Butler, D. Ghosh, S. Donaldson, W. R. and Keck, R. L. Proc. SPIE 5580, 408 (2005).
23. FLASH Center2015, Flash Users Guide, Tech. Rep., University of Chicago FLASH Center for Computational Science.
24. Macfarlane, J. J. Comput. Phys. Commun. 56, 259 (1989).
25. Evans, C. R. and Hawley, J. F. Astrophys. J. 332, 659 (1988).
26. Gray, D. F. Observation and Analysis of Stellar Photospheres (Cambridge University Press, 2008).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed