Skip to main content Accessibility help
×
Home

Technology development for ultraintense all-OPCPA systems

  • J. Bromage (a1), S.-W. Bahk (a1), I. A. Begishev (a1), C. Dorrer (a1), M. J. Guardalben (a1), B. N. Hoffman (a1), J. B. Oliver (a1), R. G. Roides (a1), E. M. Schiesser (a1), M. J. Shoup III (a1), M. Spilatro (a1), B. Webb (a1), D. Weiner (a1) and J. D. Zuegel (a1)...

Abstract

Optical parametric chirped-pulse amplification (OPCPA) [Dubietis et al., Opt. Commun. 88, 437 (1992)] implemented by multikilojoule Nd:glass pump lasers is a promising approach to produce ultraintense pulses ( ${>}10^{23}~\text{W}/\text{cm}^{2}$ ). Technologies are being developed to upgrade the OMEGA EP Laser System with the goal to pump an optical parametric amplifier line (EP OPAL) with two of the OMEGA EP beamlines. The resulting ultraintense pulses (1.5 kJ, 20 fs, $10^{24}~\text{W}/\text{cm}^{2}$ ) would be used jointly with picosecond and nanosecond pulses produced by the other two beamlines. A midscale OPAL pumped by the Multi-Terawatt (MTW) laser is being constructed to produce 7.5-J, 15-fs pulses and demonstrate scalable technologies suitable for the upgrade. MTW OPAL will share a target area with the MTW laser (50 J, 1 to 100 ps), enabling several joint-shot configurations. We report on the status of the MTW OPAL system, and the technology development required for this class of all-OPCPA laser system for ultraintense pulses.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Technology development for ultraintense all-OPCPA systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Technology development for ultraintense all-OPCPA systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Technology development for ultraintense all-OPCPA systems
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: J. Bromage, Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd., Rochester, NY 14623-1299, USA. Email: jbro@lle.rochester.edu

References

Hide All
1. Ross, I. N. Matousek, P. Towrie, M. Langley, A. J. and Collier, J. L. Opt. Commun. 144, 125 (1997).
2. Lozhkarev, V. V. Freidman, G. I. Ginzburg, V. N. Khazanov, E. A. Palashov, O. V. Sergeev, A. M. and Yakovlev, I. V. Laser Phys. 15, 1319 (2005).
3. Tang, Y. Ross, I. N. Hernandez-Gomez, C. New, G. H. C. Musgrave, I. Chekhlov, O. V. Matousek, P. and Collier, J. L. Opt. Lett. 33, 2386 (2008).
4. Kelly, J. H. Waxer, L. J. Bagnoud, V. Begishev, I. A. Bromage, J. Kruschwitz, B. E. Kessler, T. J. Loucks, S. J. Maywar, D. N. Mccrory, R. L. Meyerhofer, D. D. Morse, S. F. B. Oliver, J. B. Rigatti, A. L. Schmid, A. W. Stoeckl, C. Dalton, S. Folnsbee, L. Guardalben, M. J. Jungquist, R. Puth, J. Shoup, M. J. III Weiner, D. and Zuegel, J. D. J. Phys. IV 133, 75 (2006).
5. Kon, A. Nakatsutsumi, M. Buffechoux, S. Chen, Z. L. Fuchs, J. Jin, Z. and Kodama, R. J. Phys.: Conf. Ser. 244, 032008 (2010).
6. Bagnoud, V. Puth, J. Begishev, I. Guardalben, M. Zuegel, J. D. Forget, N. and Le Blanc, C. in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JFA1.
7. Begishev, I. A. Bromage, J. Bahk, S.-W. Cuffney, R. Dorrer, C. Haberberger, D. Froula, D. H. Mileham, C. Nilson, P. M. Stoeckl, C. and Zuegel, J. D. in 7th International Conference on Ultrahigh Intensity Lasers, Montebello, Quebec, Canada, 11–16 September (2016).
8. Dmitriev, V. G. Gurzadyan, G. G. and Nikogosyan, D. N. Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1991), p. 78.
9. Bor, Z. J. Mod. Opt. 35, 1907 (1988).
10. Heuck, H.-M. Neumayer, P. Kühl, T. and Wittrock, U. Appl. Phys. B 84, 421 (2006).
11. Kessler, T. J. Huang, H. and Weiner, D. in International Conference on Ultrahigh Intensity Laser Development, Science and Emerging Applications 2006 (ICUIL 2006) (2006), p. 126.
12. Néauport, J. Blanchot, N. Rouyer, C. and Sauteret, C. Appl. Opt. 46, 1568 (2007).
13. Gaul, E. W. Martinez, M. Blakeney, J. Jochmann, A. Ringuette, M. Hammond, D. Borger, T. Escamilla, R. Douglas, S. Henderson, W. Dyer, G. Erlandson, A. Cross, R. Caird, J. Ebbers, C. and Ditmire, T. Appl. Opt. 49, 1676 (2010).
14. Bahk, S.-W. Bromage, J. and Zuegel, J. D. Opt. Lett. 39, 1081 (2014).
15. Schiesser, E. M. Bahk, S.-W. and Rolland, P. in Optical Design and Fabrication 2017 (Optical Society of America, 2017), paper JTu3A.6.
16. Tournois, P. Opt. Commun. 140, 245 (1997).
17. Schmidt, O. Rothhardt, J. Eidam, T. Röser, F. Limpert, J. Tünnermann, A. Hansen, K. P. Jakobsen, C. and Broeng, J. Opt. Express 16, 3918 (2008).
18. Bromage, J. Fini, J. M. Dorrer, C. and Zuegel, J. D. Appl. Opt. 50, 2001 (2011).
19. Bradler, M. Baum, P. and Riedle, E. Appl. Phys. B 97, 561 (2009).
20. Fork, R. L. Shank, C. V. Hirlimann, C. Yen, R. and Tomlinson, W. J. Opt. Lett. 8, 1 (1983).
21. Cerullo, G. and De Silvestri, S. Rev. Sci. Instrum. 74, 1 (2003).
22. Gale, G. M. Cavallari, M. Driscoll, T. J. and Hache, F. Opt. Lett. 20, 1562 (1995).
23. Schimpf, D. N. Rothhardt, J. Limpert, J. Tünnermann, A. and Hanna, D. C. J. Opt. Soc. Am. B 24, 2837 (2007).
24. Dorrer, C. Okishev, A. V. and Zuegel, J. D. Opt. Lett. 32, 2143 (2007).
25. Dorrer, C. Roides, R. G. Bromage, J. and Zuegel, J. D. Opt. Lett. 39, 4466 (2014).
26. Dorrer, C. J. Opt. Soc. Am. B 31, 1891 (2014).
27. Bromage, J. Millecchia, M. Bunkenburg, J. Jungquist, R. K. Dorrer, C. and Zuegel, J. D. in Ultrafast Optics 2011, Monterey, CA, USA, 26–30 September (2011).
28. Itatani, J. Nabekawa, Y. Kondo, K. and Watanabe, S. Opt. Commun. 134, 134 (1997).
29. Bromage, J. Millecchia, M. Bunkenburg, J. Jungquist, R. K. Dorrer, C. and Zuegel, J. D. in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CM4D.4.
30. Bromage, J. Dorrer, C. and Jungquist, R. K. J. Opt. Soc. Am. B 29, 1125 (2012).
31. Bromage, J. Rothhardt, J. Hädrich, S. Dorrer, C. Jocher, C. Demmler, S. Limpert, J. Tünnermann, A. and Zuegel, J. D. Opt. Express 19, 16797 (2011).
32. Bromage, J. Dorrer, C. and Zuegel, J. D. J. Opt. 17, 094006 (2015).
33. Bagnoud, V. Guardalben, M. J. Puth, J. Zuegel, J. D. Mooney, T. and Dumas, P. Appl. Opt. 44, 282 (2005).
34. Dorrer, C. de Beauvoir, B. Le Blanc, C. Ranc, S. Rousseau, J.-P. Rousseau, P. and Chambaret, J.-P. Opt. Lett. 24, 1644 (1999).
35. Iaconis, C. and Walmsley, I. A. Opt. Lett. 23, 792 (1998).
37. Bahk, S.-W. Begishev, I. A. and Zuegel, J. D. Opt. Commun. 333, 45 (2014).
38. Bahk, S.-W. Dorrer, C. Roides, R. G. and Bromage, J. Appl. Opt. 55, 2413 (2016).
39. Oliver, J. B. Bromage, J. Smith, C. Sadowski, D. Dorrer, C. and Rigatti, A. L. Appl. Opt. 53, A221 (2014).
40. Canova, F. Uteza, O. Chambaret, J.-P. Flury, M. Tonchev, S. Fechner, R. and Parriaux, O. Opt. Express 15, 15324 (2007).
41. Wang, J. Jin, Y. Ma, J. Sun, T. and Jing, X. Appl. Opt. 49, 2969 (2010).
42. Lévy, A. Ceccotti, T. D’Oliveira, P. Réau, F. Perdrix, M. Quéré, F. Monot, P. Bougeard, M. Lagadec, H. Martin, P. Geindre, J.-P. and Audebert, P. Opt. Lett. 32, 310 (2007).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed