Skip to main content Accessibility help
×
×
Home

Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter system

  • H. Liu (a1) (a2), G.-Q. Liao (a3), Y.-H. Zhang (a1) (a2), B.-J. Zhu (a1) (a2), Z. Zhang (a1), Y.-T. Li (a1) (a2) (a4), G. G. Scott (a5), D. Rusby (a5) (a6), C. Armstrong (a5) (a6), E. Zemaityte (a5) (a6), P. Bradford (a7), N. Woolsey (a7), P. Huggard (a8), P. McKenna (a6) and D. Neely (a5) (a6)...

Abstract

A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component ( ${<}$ 1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component ( ${>}$ 3 THz) of BTR.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter system
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter system
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter system
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Y.-T. Li, Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; D. Neely, Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK. Email: ytli@iphy.ac.cn (Y.-T. Li); david.neely@stfc.ac.uk (D. Neely)

References

Hide All
1. Kampfrath, T. Tanaka, K. and Nelson, K. A. Nat. Photon. 7, 680 (2013).
2. Hafez, H. A. Chai, X. Ibrahim, A. Mondal, S. Férachou, D. Ropagnol, X. and Ozaki, T. J. Opt. 18, 093004 (2016).
3. Nanni, E. A. Huang, W. R. Hong, K. H. Ravi, K. Fallahi, A. Moriena, G. Miller, R. J. and Kartner, F. X. Nature Commun. 6, 8486 (2015).
4. Symes, D. R. Neely, D. Collier, J. L. Jaroszynski, D. A. and Dumitras, D. AIP Conf. Proc. 1228, 444 (2010).
5. Danson, C. Hillier, D. Hopps, N. and Neely, D. High Power Laser Sci. Eng. 3, e3 (2015).
6. Li, C. Liao, G. Q. Zhou, M. L. Du, F. Ma, J. L. Li, Y. T. Wang, W. M. Sheng, Z. M. Chen, L. M. and Zhang, J. Opt. Express 24, 4010 (2016).
7. Liao, G. Q. Li, Y. T. Li, C. Su, L. N. Zheng, Y. Liu, M. Wang, W. M. Hu, Z. D. Yan, W. C. Dunn, J. Nilsen, J. Hunter, J. Liu, Y. Wang, X. Chen, L. M. Ma, J. L. Lu, X. Jin, Z. Kodama, R. Sheng, Z. M. and Zhang, J. Phys. Rev. Lett. 114, 255001 (2015).
8. Liao, G. Q. Li, Y. T. Zhang, Y. H. Liu, H. Ge, X. L. Yang, S. Wei, W. Q. Yuan, X. H. Deng, Y. Q. Zhu, B. J. Zhang, Z. Wang, W. M. Sheng, Z. M. Chen, L. M. Lu, X. Ma, J. L. Wang, X. and Zhang, J. Phys. Rev. Lett. 116, 205003 (2016).
9. Liao, G. Q. Li, Y. T. Li, C. Liu, H. Zhang, Y. H. Jiang, W. M. Yuan, X. H. Nilsen, J. Ozaki, T. Wang, W. M. Sheng, Z. M. Neely, D. McKenna, P. and Zhang, J. Plasma Phys. Control. Fusion 59, 014039 (2017).
10. Gopal, A. Herzer, S. Schmidt, A. Singh, P. Reinhard, A. Ziegler, W. Brommel, D. Karmakar, A. Gibbon, P. Dillner, U. May, T. Meyer, H. G. and Paulus, G. G. Phys. Rev. Lett. 111, 074802 (2013).
11. Gopal, A. Singh, P. Herzer, S. Reinhard, A. Schmidt, A. Dillner, U. May, T. Meyer, H. G. Ziegler, W. and Paulus, G. G. Opt. Lett. 38, 4705 (2013).
12. Wu, Z. Fisher, A. S. Goodfellow, J. Fuchs, M. Daranciang, D. Hogan, M. Loos, H. and Lindenberg, A. Rev. Sci. Instrum. 84, 022701 (2013).
13. Vicario, C. Ovchinnikov, A. V. Ashitkov, S. I. Agranat, M. B. Fortov, V. E. and Hauri, C. P. Opt. Lett. 39, 6632 (2014).
14. Sheng, Z. M. Mima, K. Zhang, J. and Sanuki, H. Phys. Rev. Lett. 94, 095003 (2005).
15. Ding, W. J. Sheng, Z. M. and Koh, W. S. Appl. Phys. Lett. 103, 204107 (2013).
16. Hamster, H. Sullivan, A. Gordon, S. White, W. and Falcone, R. W. Phys. Rev. Lett. 71, 2725 (1993).
17. Li, C. Zhou, M. L. Ding, W. J. Du, F. Liu, F. Li, Y. T. Wang, W. M. Sheng, Z. M. Ma, J. L. Chen, L. M. Lu, X. Dong, Q. L. Wang, Z. H. Lou, Z. Shi, S. C. Wei, Z. Y. and Zhang, J. Phys. Rev. E 84, 036405 (2011).
18. Sheng, Z.-M. Mima, K. and Zhang, J. Phys. Plasmas 12, 123103 (2005).
19. Li, Y. T. Li, C. Zhou, M. L. Wang, W. M. Du, F. Ding, W. J. Lin, X. X. Liu, F. Sheng, Z. M. Peng, X. Y. Chen, L. M. Ma, J. L. Lu, X. Wang, Z. H. Wei, Z. Y. and Zhang, J. Appl. Phys. Lett. 100, 254101 (2012).
20. Sagisaka, A. Daido, H. Nashima, S. Orimo, S. Ogura, K. Mori, M. Yogo, A. Ma, J. Daito, I. Pirozhkov, A. S. Bulanov, S. V. Esirkepov, T. Z. Shimizu, K. and Hosoda, M. Appl. Phys. B 90, 373 (2008).
21. Wu, Q. and Zhang, X. C. Appl. Phys. Lett. 67, 3523 (1995).
22. Zhang, L.-L. Wang, W.-M. Wu, T. Zhang, R. Zhang, S.-J. Zhang, C.-L. Zhang, Y. Sheng, Z.-M. and Zhang, X.-C. Phys. Rev. Lett. 119, 235001 (2017).
23. Wu, Q. and Zhang, X. C. Appl. Phys. Lett. 70, 1784 (1997).
24. Meijer, A. S. Pijpers, J. J. H. Nienhuys, H. K. Bonn, M. and van der Zande, W. J. J. Opt. A 10, 095303 (2008).
25. Wesch, S. Schmidt, B. Behrens, C. Delsim-Hashemi, H. and Schmüser, P. Nucl. Instrum. Methods Phys. Res. A 665, 40 (2011).
26. Li, C. Liao, G.-Q. and Li, Y.-T. High Power Laser Sci. Eng. 3, e15 (2015).
27. Su, X. Yan, L. Du, Y. Zhang, Z. Zhou, Z. Wang, D. Zheng, L. Tian, Q. Huang, W. and Tang, C. Nucl. Instrum. Methods Phys. Res. B 402, 157 (2017).
30. Wu, X.-J. Ma, J.-L. Zhang, B.-L. Chai, S.-S. Fang, Z.-J. Xia, C.-Y. Kong, D.-Y. Wang, J.-G. Liu, H. Zhu, C.-Q. Wang, X. Ruan, C.-J. and Li, Y.-T. Opt. Express 26, 7107 (2018).
31. Huggard, P. G. Zeuner, S. Goller, K. Lengfellner, H. and Prettl, W. J. Appl. Phys. 75, 616 (1994).
33. Danson, C. N. Collier, J. Neely, D. Barzanti, L. J. Damerell, A. Edwards, C. B. Hutchinson, M. H. R. Key, M. H. Norreys, P. A. and Pepler, D. A. Opt. Acta Int. J. Opt. 45, 1653 (1998).
34. Mead, M. J. Neely, D. Gauoin, J. Heathcote, R. and Patel, P. Rev. Sci. Instrum. 75, 4225 (2004).
35. Bradford, P. Woolsey, N. C. Scott, G. G. Liao, G. Liu, H. Zhang, Y. Zhu, B. Armstrong, C. Astbury, S. Brenner, C. Brummitt, P. Consoli, F. East, I. Gray, R. Haddock, D. Huggard, P. Jones, P. J. R. Montgomery, E. Musgrave, I. Oliveira, P. Rusby, D. R. Spindloe, C. Summers, B. Zemaityte, E. Zhang, Z. Li, Y. McKenna, P. and Neely, D. High Power Laser Sci. Eng. 6, e21 (2018).
36. Schroeder, C. B. Esarey, E. Van Tilborg, J. and Leemans, W. P. Phys. Rev. E 69, 016501 (2004).
37. Quinn, M. N. Yuan, X. H. Lin, X. X. Carroll, D. C. Tresca, O. Gray, R. J. Coury, M. Li, C. Li, Y. T. Brenner, C. M. Robinson, A. P. L. Neely, D. Zielbauer, B. Aurand, B. Fils, J. Kuehl, T. and McKenna, P. Plasma Phys. Control. Fusion 53, 025007 (2011).
38. Sentoku, Y. Cowan, T. E. Kemp, A. and Ruhl, H. Phys. Plasmas 10, 2009 (2003).
39. McKenna, P. Carroll, D. C. Lundh, O. Nürnberg, F. Markey, K. Bandyopadhyay, S. Batani, D. Evans, R. G. Jafer, R. Kar, S. Neely, D. Pepler, D. Quinn, M. N. Redaelli, R. Roth, M. Wahlström, C. G. Yuan, X. H. and Zepf, M. Laser Part Beams 26, 591 (2008).
40. Esirkepov, T. Z. Koga, J. K. Sunahara, A. Morita, T. Nishikino, M. Kageyama, K. Nagatomo, H. Nishihara, K. Sagisaka, A. Kotaki, H. Nakamura, T. Fukuda, Y. Okada, H. Pirozhkov, A. S. Yogo, A. Nishiuchi, M. Kiriyama, H. Kondo, K. Kando, M. and Bulanov, S. V. Nucl. Instrum. Methods Phys. Res. A 745, 150 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed