Skip to main content Accessibility help
×
Home

Reflection of intense laser light from microstructured targets as a potential diagnostic of laser focus and plasma temperature

  • J. Jarrett (a1), M. King (a1), R. J. Gray (a1), N. Neumann (a2), L. Döhl (a3), C. D. Baird (a3), T. Ebert (a2), M. Hesse (a2), A. Tebartz (a2), D. R. Rusby (a1) (a4), N. C. Woolsey (a3), D. Neely (a1) (a4), M. Roth (a2) and P. McKenna (a1)...

Abstract

The spatial-intensity profile of light reflected during the interaction of an intense laser pulse with a microstructured target is investigated experimentally and the potential to apply this as a diagnostic of the interaction physics is explored numerically. Diffraction and speckle patterns are measured in the specularly reflected light in the cases of targets with regular groove and needle-like structures, respectively, highlighting the potential to use this as a diagnostic of the evolving plasma surface. It is shown, via ray-tracing and numerical modelling, that for a laser focal spot diameter smaller than the periodicity of the target structure, the reflected light patterns can potentially be used to diagnose the degree of plasma expansion, and by extension the local plasma temperature, at the focus of the intense laser light. The reflected patterns could also be used to diagnose the size of the laser focal spot during a high-intensity interaction when using a regular structure with known spacing.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reflection of intense laser light from microstructured targets as a potential diagnostic of laser focus and plasma temperature
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reflection of intense laser light from microstructured targets as a potential diagnostic of laser focus and plasma temperature
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reflection of intense laser light from microstructured targets as a potential diagnostic of laser focus and plasma temperature
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to:  P. McKenna, Department of Physics SUPA, University of Strathclyde, G4 0NG, UK. Email: paul.mckenna@strath.ac.uk

References

Hide All
1. Daido, H. Nishiuchi, M. and Pirozhkov, A. Rep. Prog. Phys. 75, 056401 (2012).
2. Macchi, A. Borghesi, M. and Passoni, M. Rev. Mod. Phys. 85, 751 (2013).
3. Higginson, A. Gray, R. J. King, M. Dance, R. J. Williamson, S. D. R. Butler, N. M. H. Wilson, R. Capdessus, R. Armstrong, C. Green, J. S. Hawkes, S. J. Martin, P. Wei, W. Q. Mirfayzi, S. R. Yuan, X. H. Kar, S. Borghesi, M. Clarke, R. J. Neely, D. and McKenna, P. Nature Commun. 9, 724 (2018).
4. Murnane, M. M. Kapteyn, H. C. and Falcone, R. W. Phys. Rev. Lett. 62, 155 (1989).
5. Singh, M. and Sharma, R. P. Contrib. Plasma Phys. 53, 540 (2013).
6. Mead, M. J. Neely, D. Gauoin, J. Heathcote, R. and Patel, P. Rev. Sci. Instrum. 75, 4225 (2004).
7. Bradford, P. Woolsey, N. C. Scott, G. G. Liao, G. Liu, H. Zhang, Y. Zhu, B. Armstrong, C. Astbury, S. Brenner, C. Brummitt, P. Consoli, F. East, I. Gray, R. Haddock, D. Huggard, P. Jones, P. J. R. Montgomery, E. Musgrave, I. Oliveira, P. Rusby, D. R. Spindloe, C. Summers, B. Zemaityte, E. Zhang, Z. Li, Y. McKenna, P. and Neely, D. High Power Laser Sci. Eng. 6, e21 (2018).
8. Dromey, B. Zepf, M. Gopal, A. Lancaster, K. Wei, M. S. Krushelnick, K. Tatarakis, M. Vakakis, N. Moustai‘is, S. Kodama, R. Tampo, M. Stoeckl, C. Clarke, R. Habara, H. Neely, D. Karsch, S. and Norreys, P. Nature Phys. 2, 456 (2006).
9. Ganeev, R. A. J. Phys. B 40, R213 (2007).
10. Borghesi, M. Campbell, D. H. Schiavi, A. Haines, M. G. Willi, O. MacKinnon, A. J. Patel, P. Gizzi, L. A. Galimberti, M. Clarke, R. J. Pegoraro, F. Ruhl, H. and Bulanov, S. Phys. Plasmas 9, 2214 (2002).
11. MacKinnon, A. J. Patel, P. K. Borghesi, M. Clarke, R. C. Freeman, R. R. Habara, H. Hatchett, S. P. Hey, D. Hicks, D. G. Kar, S. Key, M. H. King, J. A. Lancaster, K. Neely, D. Nikkro, A. Norreys, P. A. Notley, M. M. Phillips, T. W. Romagnani, L. Snavely, R. A. Stephens, R. B. and Town, R. P. J. Phys. Rev. Lett. 97, 045001 (2006).
12. Patel, P. K. MacKinnon, A. J. Key, M. H. Cowan, T. E. Foord, M. E. Allen, M. Price, D. F. Ruhl, H. Springer, P. T. and Stephens, R. Phys. Rev. Lett. 91, 125004 (2003).
13. Bulanov, S. and Khoroshkov, V. S. Plasma Phys. Rep. 28, 453 (2002).
14. Tabak, M. Hammer, J. Glinsky, M. E. Kruer, W. L. Wilks, S. C. Woodworth, J. Campbell, E. M. and Perry, M. D. Phys. Plasmas 1, 1626 (1994).
15. Roth, M. Cowan, T. E. Key, M. H. Hatchett, S. P. Brown, C. Fountain, W. Johnson, J. Pennington, D. M. Snavely, R. A. Wilks, S. C. Yasuike, K. Ruhl, H. Pegoraro, F. Bulanov, S. V. Campbell, E. M. Perry, M. D. and Powell, H. Phys. Rev. Lett. 86, 436 (2001).
16. Carroll, D. C. Brummitt, P. Neely, D. Lindau, F. Lundh, O. Wahlström, C. G. and McKenna, P. Nucl. Instrum. Methods Phys. A 620, 23 (2010).
17. Rusby, D. Wilson, L. A. Gray, R. J. Dance, R. J. Butler, N. M. H. MacLellan, D. A. Scott, G. G. Bagnoud, V. Zielbauer, B. McKenna, P. and Neely, D. J. Plasma Phys 81, 475810505 (2015).
18. Zepf, M. Clark, E. L. Krushelnick, K. Beg, F. N. Escoda, C. Dangor, A. E. Santala, M. I. K. Tatarakis, M. Watts, I. F. Norreys, P. A. Clarke, R. J. Davies, J. R. Sinclair, M. A. Edwards, R. D. Goldsack, T. J. Spencer, I. and Ledingham, K. W. D. Appl. Phys. Lett. 8, 2323 (2001).
19. Zhao, Y. Deng, B. Xiong, G. Hu, Z. M. Wei, M. X. Zhu, T. Shang, W. L. Li, J. Yang, G. H. Zhang, J. Y. and Yang, J. M. Phys. Lett. 28, 065201 (2011).
20. Freidberg, J. P. Mitchell, R. W. Morse, R. L. and Rudsinski, L. I. Phys. Rev. Lett. 28, 795 (1972).
21. Brunel, F. Phys. Rev. Lett. 59, 52 (1987).
22. Kruer, L. and Estabrook, K. Phys. Fluids. 28, 430 (1985).
23. Gonzalez-Izquierdo, B. Gray, R. J. King, M. Dance, R. J. Wilson, R. McCreadie, J. Butler, N. M. H. Capdessus, R. Hawkes, S. Green, J. S. Borghesi, M. Neely, D. and McKenna, P. Nature Phys. 12, 505 (2016).
24. Gonzalez-Izquierdo, B. King, M. Gray, R. J. Wilson, R. Dance, R. J. Powell, H. MacLellan, D. A. McCreadie, J. Butler, N. M. H. Hawkes, S. Green, J. S. Murphy, C. D. Stockhausen, L. C. Carroll, D. C. Booth, N. Scott, G. G. Borghesi, M. Neely, D. and McKenna, P. Nature Commun. 7, 12891 (2016).
25. Jiang, S. Krygier, A. G. Schumacher, D. W. Akli, K. U. and Freeman, R. R. Phys. Rev. E. 89, 013106 (2014).
26. Margarone, D. Klimo, O. Kim, I. J. Prokupek, J. Limpouch, J. Jeong, T. M. Mocek, T. Psikal, J. Kim, H. T. Proska, J. Nam, K. H. Stolcova, L. Choi, I. W. Lee, S. K. Sung, J. H. Yu, T. J. and Korn, G. Phys. Rev. Lett. 109, 234801 (2012).
27. Streeter, M. J. V. Foster, P. S. Cameron, F. H. Borghesi, M. Brenner, C. Carroll, D. C. Divall, E. Dover, N. P. Dromey, B. Gallegos, P. Green, J. S. Hawkes, S. Hooker, C. J. Kar, S. McKenna, P. Nagel, S. R. Najmudin, Z. Palmer, C. A. J. Prasad, R. Quinn, K. E. Rajeev, P. P. Robinson, A. P. L. Romagnani, L. Schreiber, J. Spindloe, C. Ter-Avetisyan, S. Tresca, O. Zepf, M. and Neely, D. New J. Physics. 13, 023041 (2011).
28. Dromey, B. Kar, S. Zepf, M. and Foster, P. Rev. Sci. Instrum. 75, 645 (2004).
29. Scott, G. G. Bagnoud, V. Brabetz, C. Clarke, R. J. Green, J. S. Heathcote, R. I. Powell, H. W. Zielbauer, B. Arber, T. D. McKenna, P. and Neely, D New J. Phys. 17, 033027 (2015).
30. Her, T.-H. Finlay, R. J. Wu, C. Deliwala, S. and Mazur, E. Appl. Phys. Lett. 73, 1673 (1998).
31. Ebert, T. Neumann, N. W. Abel, T. Schaumann, G. and Roth, M. High Power Laser Sci. Eng. 13, e18 (2017).
32. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A. Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Control. Fusion 57, 113001 (2015).
34. Gonzalez-Izquierdo, B. Capdessus, R. King, M. Gray, R. J. Wilson, R. Dance, R. J. McCreadie, J. Butler, N. M. H. Hawkes, St. J. Green, J. S. Booth, N. Borghesi, M. Neely, D. and McKenna, P. Appl. Sci. 8, 336 (2018).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed