Skip to main content Accessibility help
×
Home

Polarized proton beams from laser-induced plasmas

  • Anna Hützen (a1) (a2), Johannes Thomas (a3), Jürgen Böker (a4), Ralf Engels (a5), Ralf Gebel (a4), Andreas Lehrach (a4) (a6), Alexander Pukhov (a3), T. Peter Rakitzis (a7) (a8), Dimitris Sofikitis (a7) (a8) and Markus Büscher (a1) (a2)...

Abstract

We report on the concept of an innovative source to produce polarized proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven plasma accelerator. Spin effects have been implemented into the particle-in-cell (PIC) simulation code VLPL (Virtual Laser Plasma Lab) to make theoretical predictions about the behavior of proton spins in laser-induced plasmas. Simulations of spin-polarized targets show that the polarization is conserved during the acceleration process. For the experimental realization, a polarized HCl gas-jet target is under construction using the fundamental wavelength of a Nd:YAG laser system to align the HCl bonds and simultaneously circularly polarized light of the fifth harmonic to photo-dissociate, yielding nuclear polarized H atoms. Subsequently, their degree of polarization is measured with a Lamb-shift polarimeter. The final experiments, aiming at the first observation of a polarized particle beam from laser-generated plasmas, will be carried out at the 10 PW laser system SULF at SIOM, Shanghai.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Polarized proton beams from laser-induced plasmas
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Polarized proton beams from laser-induced plasmas
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Polarized proton beams from laser-induced plasmas
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: A. Hützen, Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany. Email: a.huetzen@fz-juelich.de

References

Hide All
1. Macchi, A. Borghesi, M. and Passoni, M. Rev. Mod. Phys. 85, 751 (2013).
2. Raab, N. Büscher, M. Cerchez, M. Engels, R. Engin, l. Gibbon, P. Greven, P. Holler, A. Karmakar, A. Lehrach, A. Maier, R. Swantusch, M. Toncian, M. Toncian, T. and Willi, O. Phys. Plasma 21, 023104 (2014).
3. Wen, M. Bauke, H. and Keitel, C. H. Dynamical spin effects in ultra-relativistic laser pulses (2014), arXiv:1406.3659.
4. Vieira, J. Huang, C.-K. Mori, W. B. and Silva, L. O. Phys. Rev. S Accel. Beams 14, 071303 (2011).
5.Universitätsklinikum Heidelberg, Heidelberger Ionenstrahl-Therapiezentrum (HIT) https://www.klinikum.uni-heidelberg.de/Willkommen.113005.0.html (August 1, 2018).
6. Garraway, B. M. and Stenholm, S. Contemp. Phys. 43, 3 (2002).
7. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A. Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Control. Fusion 57, 113001 (2015).
8. Shen, B. F. Zhang, X. Sheng, Z. Yu, M. Y. and Cary, J. Phys. Rev. ST Accel. Beams 12, 121301 (2009).
9. Sofikitis, D. Kannis, C. S. Boulogiannis, G. K. and Rakitzis, T. P. Phys. Rev. Lett. 121, 083001 (2018).
10. Pukhov, A. Proceedings, CAS – CERN Accelerator School: Plasma Wake Acceleration (2016), p. 181.
11. Vieira, J. Fonseca, R. A. and Silva, L. O. Proceedings, CAS – CERN Accelerator School: Plasma Wake Acceleration (2016), p. 79.
12. Thomas, J. Hützen, A. Pukhov, A. Lehrach, A. and Büscher, M. Tracking of Particle Spins with PIC Codes, publication in preparation.
13. Bargmann, V. Michel, L. and Telegdi, V. Phys. Rev. Lett. 2, 435 (1959).
14. Jülich Supercomputing Centre, J. Large-scale Research Facilities A62, 2 (2016).
15. Farago, P. S. Rep. Prog. Phys. 34, 1055 (1971).
16. Keith, C. D. Brock, J. Carlin, C. Comer, S. A. Kashy, D. McAndrew, J. Meekins, D. G. Pasyuk, E. Pierce, J. J. and Seely, M. L. The Jefferson Lab frozen spin target (2012), arXiv:1204.1250.
17. Engin, I. Büscher, M. Deppert, O. Di Lucchio, L. Engels, R. Frydrych, S. Gibbon, P. Kleinschmidt, A. Lehrach, A. Roth, M. Schlüter, F. Strathmann, K. and Wagner, F. in Proceedings of Science (PSTP2015), paper 002.
18. Soltner, H. Büscher, M. Burgmer, P. Engin, I. Nauschütt, B. Maier, S. and Glückler, H. IEEE Trans. Appl. Supercon. 26, 4 (2016).
19. Nass, A. Baumgarten, C. Braun, B. Ciullo, G. Court, G. Dalpiaz, P. F. Golendukhin, A. Graw, G. Haerberli, W. Hennoch, M. Hertenberger, R. Koch, N. Kolster, H. Lenisa, P. Marukyan, H. Raithel, M. Reggiani, D. Rith, K. Simani, M. C. Steffens, E. Stewart, J. Tait, P. and Wise, T. Nucl. Instrum. Methods Phys. Res. A 505, 633 (2003).
20. Sofikitis, D. Glodic, P. Koumarianou, G. Jiang, H. Bougas, L. Samartzis, P. C. Andreev, A. and Rakitzis, T. P. Phys. Rev. Lett. 118, 233401 (2017).
21. Sofikitis, D. Rubio-Lago, L. Bougas, L. Alexander, A. J. and Rakitzis, T. P. J. Chem. Phys. 129, 144302 (2008).
22.EKSPLA, SL330 series – SBS Compressed Picosecond Nd:YAG Lasers http://ekspla.com/product/picosecond-high-energy-ndyag-lasers-sl330-series/ (July 26, 2018).
23. Friedrich, B. and Herschbach, D. J. Phys. Chem. A 103, 10280 (1999).
24. Rakitzis, T. P. ChemPhysChem 5, 1489 (2004).
25. Engels, R. Emmerich, R. Ley, J. Tenckhoff, G. Paetz gen. Schieck, H. Mikirtytchiants, M. Rathmann, F. Seyfarth, H. and Vassiliev, A. Rev. Sci. Instrum. 74, 4607 (2003).
26. Engels, R. Emmerichi, E. Grigoryev, K. Ley, J. Mikirtychyants, M. Paetz gen. Schieck, H. Rathmann, F. Sarkad, J. Seyfarth, H. Temckhoff, G. and Vasilyev, V. Rev. Sci. Instrum. 76, 053305 (2005).
27. Shen, B. F. Li, Y. Yu, M. Y. and Cary, J. Phys. Rev. E 76, 055402 (2007).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed