Skip to main content Accessibility help
×
Home

Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes

  • D. Wu (a1) (a2), X. T. He (a3), W. Yu (a1) and S. Fritzsche (a2) (a4)

Abstract

Direct numerical simulation of intense laser–solid interactions is still of great challenges, because of the many coupled atomic and plasma processes, such as ionization dynamics, collision among charged particles and collective electromagnetic fields, to name just a few. Here, we develop a new particle-in-cell (PIC) simulation code, which enables us to calculate laser–solid interactions in a more realistic way. This code is able to cover almost ‘all’ the coupled physical processes. As an application of the new code, the generation and transport of energetic electrons in front of and within the solid target when irradiated by intense laser beams are studied. For the considered case, in which laser intensity is $10^{20}~\text{W}\cdot \text{cm}^{-2}$ and pre-plasma scale length in front of the solid is $10~\unicode[STIX]{x03BC}\text{m}$ , several quantitative conclusions are drawn: (i) the collisional damping (although it is very weak) can significantly affect the energetic electrons generation in front of the target, (ii) the Bremsstrahlung radiation will be enhanced by 2–3 times when the solid is dramatically heated and ionized, (iii) the ‘cut-off’ electron energy is lowered by an amount of 25% when both collision damping and Bremsstrahlung radiations are included, and (iv) the resistive electromagnetic fields due to Ohmic heating play nonignorable roles and must be taken into account in such interactions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: D. Wu, No. 390 Qinghe Road, Jiading District, Shanghai 201800, China. Email: wudong@siom.ac.cn

References

Hide All
1. Van Woerkom, L. Akli, K. U. Bartal, T. Beg, F. N. Chawla, S. Chen, C. D. Chowdhury, E. Freeman, R. R. Hey, D. Key, M. H. King, J. A. Link, A. Ma, T. MacKinnon, A. J. MacPhee, A. G. Offermann, D. Ovchinnikov, V. Patel, P. K. Schumacher, D. W. Stephens, R. B. and Tsui, Y. Y. Phys. Plasmas 15, 056304 (2008).
2. MacPhee, A. G. Divol, L. Kemp, A. J. Akli, K. U. Beg, F. N. Chen, C. D. Chen, H. Hey, D. S. Fedosejevs, R. J. Freeman, R. R. Henesian, M. Key, M. H. Le Pape, S. Link, A. Ma, T. Mackinnon, A. J. Ovchinnikov, V. M. Patel, P. K. Phillips, T. W. Stephens, R. B. Tabak, M. Town, R. Tsui, Y. Y. Van Woerkom, L. D. Wei, M. S. and Wilks, S. C. Phys. Rev. Lett. 104, 055002 (2010).
3. Wu, D. He, X. T. Yu, W. and Fritzsche, S. Phys. Rev. E 95, 023208 (2017).
4. Wu, D. He, X. T. Yu, W. and Fritzsche, S. Phys. Rev. E 95, 023207 (2017).
5. He, X. T. Li, J. W. Fan, Z. F. Wang, L. F. Liu, J. Lan, K. Wu, J. F. and Ye, W. H. Phys. Plasmas 23, 082706 (2016).
6. Tabak, M. Hammer, J. Glinsky, M. E. Kruer, W. L. Wilks, S. C. Woodworth, J. Campbell, E. M. Perry, M. D. and Mason, R. J. Phys. Plasmas 1, 1626 (1994).
7. Ma, T. Sawada, H. Patel, P. K. Chen, C. D. Divol, L. Higginson, D. P. Kemp, A. J. Key, M. H. Larson, D. J. Le Pape, S. Link, A. MacPhee, A. G. McLean, H. S. Ping, Y. Stephens, R. B. Wilks, S. C. and Beg, F. N. Phys. Rev. Lett 108, 115004 (2012).
8. White, T. G. Hartley, N. J. Borm, B. Crowley, B. J. B. Harris, J. W. O. Hochhaus, D. C. Kaempfer, T. Li, K. Neumayer, P. Pattison, L. K. Pfeifer, F. Richardson, S. Robinson, A. P. L. Uschmann, I. and Gregori, G. Phys. Rev. Lett. 112, 145005 (2014).
9. Bulanov, S. V. Esirkepov, T. Z. Khoroshkov, V. S. Kuznetsov, A. V. and Pegoraro, F. Phys. Lett. A 299, 240 (2002).
10. Bin, J. Allinger, K. Assmann, W. Dollinger, G. Drexler, G. A. Friedl, A. A. Habs, D. Hilz, P. Hoerlein, R. Humble, N. Karsch, S. Khrennikov, K. Kiefer, D. Krausz, F. Ma, W. Michalski, D. Molls, M. Raith, S. Reinhardt, S. Roper, B. Schmid, T. E. Tajima, T. Wenz, J. Zlobinskaya, O. Schreiber, J. and Wilkens, J. J. Appl. Phys. Lett. 101, 243701 (2012).
11. Yogo, A. Sato, K. Nishikino, M. Mori, M. Teshima, T. Numasaki, H. Murakami, M. Demizu, Y. Akagi, S. Nagayama, S. Ogura, K. Sagisaka, A. Orimo, S. Nishiuchi, M. Pirozhkov, A. S. Ikegami, M. Tampo, M. Sakaki, H. Suzuki, M. Daito, I. Oishi, Y. Sugiyama, H. Kiriyama, H. Okada, H. Kanazawa, S. Kondo, S. Shimomura, T. Nakai, Y. Tanoue, M. Sugiyama, H. Sasao, H. Wakai, D. Kawachi, T. Nishimura, H. Bolton, P. R. and Daido, H. AIP Conf. Proc. 1153, 438 (2009).
12. Kraft, S. D. Richter, C. Zeil, K. Baumann, M. Beyreuther, E. Bock, S. Bussmann, M. Cowan, T. E. Dammene, Y. Enghardt, W. Helbig, U. Karsch, L. Kluge, T. Laschinsky, L. Lessmann, E. Metzkes, J. Naumburger, D. Sauerbrey, R. Schurer, M. Sobiella, M. Woithe, J. Schramm, U. and Pawelke, J. New J. Phys. 12, 085003 (2010).
13. Li, C. K. Seguin, F. H. Frenje, J. A. Manuel, M. Casey, D. Sinenian, N. Petrasso, R. D. Amendt, P. A. Landen, O. L. Rygg, J. R. Town, R. P. J. Betti, R. Delettrez, J. Knauer, J. P. Marshall, F. Meyerhofer, D. D. Sangster, T. C. Shvarts, D. Smalyuk, V. A. Soures, J. M. Back, C. A. Kilkenny, J. D. and Nikroo, A. Phys. Plasmas 16, 056304 (2009).
14. Borghesi, M. Sarri, G. Cecchetti, C. A. Kourakis, I. Hoarty, D. Stevenson, R. M. James, S. Brown, C. D. Hobbs, P. Lockyear, J. Morton, J. Willi, O. Jung, R. and Dieckmann, M. Laser Part. Beams 28, 277 (2010).
15. Ravasio, A. Romagnani, L. Le Pape, S. Benuzzi-Mounaix, A. Cecchetti, C. Batani, D. Boehly, T. Borghesi, M. Dezulian, R. Gremillet, L. Henry, E. Hicks, D. Loupias, B. MacKinnon, A. Ozaki, N. Park, H. S. Patel, P. Schiavi, A. Vinci, T. Clarke, R. Notley, M. Bandyopadhyay, S. and Koenig, M. Phys. Rev. E 82, 016407 (2010).
16. Bin, J. H. Ma, W. J. Wang, H. Y. Streeter, M. J. V. Kreuzer, C. Kiefer, D. Yeung, M. Cousens, S. Foster, P. S. Dromey, B. Yan, X. Q. Ramis, R. Meyer-ter-Vehn, J. Zepf, M. and Schreiber, J. Phys. Rev. Lett. 115, 064801 (2015).
17. Wu, D. Zheng, C. Y. Zhou, C. T. Yan, X. Q. Yu, M. Y. and He, X. T. Phys. Plasmas 20, 023102 (2013).
18. Chen, M. Pukhov, A. Yu, T. P. and Sheng, Z. M. Phys. Rev. Lett. 103, 024801 (2009).
19. Wu, D. Zheng, C. Y. Qiao, B. Zhou, C. T. Yan, X. Q. Yu, M. Y. and He, X. T. Phys. Rev. E 90, 023101 (2014).
20. Leblanc, P. and Sentoku, Y. Phys. Rev. E 89, 023109 (2014).
21. Huang, L. G. Kluge, T. and Cowan, T. E. Phys. Plasmas 23, 063112 (2016).
22. Jiang, S. Krygier, A. G. Schumacher, D. W. Akli, K. U. and Freeman, R. R. Eur. Phys. J. D 68, 283 (2014).
23. Meadowcroft, A. L. and Edwards, R. D. IEEE Trans. Plasma Sci. 40, 1992 (2012).
24. Hanus, V. Drska, L. dHumieres, E. and Tikhonchuk, V. Laser Part. Beams 32, 171 (2014).
25. Beg, F. N. Bell, A. R. Dangor, A. E. Danson, C. N. Fews, A. P. Glinsky, M. E. Hammel, B. A. Lee, P. Norreys, P. A. and Tatarakis, M. Phys. Plasmas 4, 447 (1997).
26. Wilks, S. C. Kruer, W. L. Tabak, M. and Langdon, A. B. Phys. Rev. Lett. 69, 1383 (1992).
27. Sheng, Z. M. Mima, K. Zhang, J. and Meyer-ter-Vehn, J. Phys. Rev. E 69, 016407 (2004).
28. Kemp, A. J. Sentoku, Y. and Tabak, M. Phys. Rev. E 79, 066406 (2009).
29. Paradkar, B. S. Wei, M. S. Yabuuchi, T. Stephens, R. B. Haines, M. G. Krasheninnikov, S. I. and Beg, F. N. Phys. Rev. E 83, 046401 (2011).
30. Paradkar, B. S. Krasheninnikov, S. I. and Beg, F. N. Phys. Plasmas 19, 060703 (2012).
31. Krasheninnikov, S. I. Phys. Plasmas 21, 104510 (2014).
32. Sorokovikova, A. Arefiev, A. V. McGuffey, C. Qiao, B. Robinson, A. P. L. Wei, M. S. McLean, H. S. and Beg, F. N. Phys. Rev. Lett. 116, 155001 (2016).
33. Wu, D. Krasheninnikov, S. I. Luan, S. X. and Yu, W. Nucl. Fusion 57, 016007 (2017).
34. Wu, D. Krasheninnikov, S. I. Luan, S. X. and Yu, W. Phys. Plasmas 23, 123116 (2016).
35. Wu, D. Luan, S. X. Wang, J. W. Yu, W. Gong, J. X. Cao, L. H. Zheng, C. Y. and He, X. T. Plasma Phys. Control. Fusion 59, 065004 (2017).
36. Wu, D. Qiao, B. McGuffey, C. He, X. T. and Beg, F. N. Phys. Plasmas 21, 123118 (2014).
37. Wu, D. Qiao, B. and He, X. T. Phys. Plasmas 22, 093108 (2015).
38. Robinson, A. P. L. Sherlock, M. and Norreys, P. A. Phys. Rev. Lett. 100, 025002 (2008).
39. Zhou, C. T. He, X. T. and Yu, M. Y. Appl. Phys. Lett. 92, 071502 (2008).
40. Robinson, A. P. L. and Sherlock, M. Phys. Plasmas 14, 083105 (2007).
41. Zhou, C. T. He, X. T. Cao, J. M. Wang, X. G. and Wu, S. Z. J. Appl. Phys. 105, 083311 (2009).
42. Kim, J. Qiao, B. McGuffey, C. Wei, M. S. Grabowski, P. E. and Beg, F. N. Phys. Rev. Lett. 115, 054801 (2015).
43. Kim, J. McGuffey, C. Qiao, B. Wei, M. S. Grabowski, P. E. and Beg, F. N. Phys. Plasmas 23, 043104 (2016).
44. Hutchinson, I. H. Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 1987).
45. Salzmann, D. Atomic Physics in Hot Plasmas (Oxford University Press, Oxford, 1998).
46. Langdon, A. B. J. Comput. Phys. 6, 247 (1970).
47. Lotz, W. Z. Physik 232, 101 (1970).
48. Hahn, Y. and Li, J. Z. Phy. D 36, 85 (1996).
49. Stewart, J. C. and Pyatt, K. D. Astr. Phys. J. 144, 1203 (1966).
50. Ecker, G. and Kroll, W. Phys. Fluids 6, 62 (1963).
51. Takizuka, T. and Abe, H. J. Comput. Phys. 25, 205 (1977).
52. Nanbu, K. and Yonemura, S. J. Comput. Phys. 145, 639 (1998).
53. Sentoku, Y. and Kemp, A. J. J. Comput. Phys. 227, 6846 (2008).
54. Kittel, C. Introduction to Solid State Physics (Wiley & Sons, New York, 2005).
55. Milchberg, H. M. Freeman, R. R. Davey, S. C. and More, R. M. Phys. Rev. Lett. 61, 2364 (1988).
56.Refer to ‘http://www.nist.gov/pml/data/star/’ for stopping power data.
57.ICRU Report No. 37, H. O. (Wyckoff ICRU Scientific Counsellor) Stopping Powers for Electrons and Positrons (International Commission on Radiation Units, Bethseda, MD, 1984.
58. Jackson, J. D. Classical Electrodynamics (Wiley & Sons, New York, 1999).
59. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A. Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Control. Fusion 57, 113001 (2015).
60. Davies, J. R. Phys. Rev. E 68, 056404 (2003).
61. Xu, H. Chang, W. W. Zhuo, H. B. Cao, L. H. and Yue, Z. W. Chin. J. Comput. Phys. 19, 305 (2002).
62. Chen, M. Sheng, Z. M. Zheng, J. Ma, Y. Y. and Zhang, J. Chin. J. Comp. Phys. 25, 43 (2008).
63. Zhu, S. P. and Zhang, W. Y. J. Korean Phys. Soc. 49, 33 (2006).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed