Skip to main content Accessibility help
×
Home

Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry

Abstract

An overview of the Czech national R&D project HiLASE (High average power pulsed laser) is presented. The project focuses on the development of advanced high repetition rate, diode pumped solid state laser (DPSSL) systems with energies in the range from mJ to 100 J and repetition rates in the range from 10 Hz to 100 kHz. Some applications of these lasers in research and hi-tech industry are also presented.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Correspondence to: Email: divoky@fzu.cz

References

Hide All
1. Shcherbakov, E. Fomin, V. Abramov, A. Ferin, A. Mochalov, D. and Gapontsev, V. P. In Advanced Solid-State Lasers Congress (Optical Society of America, Washington, DC, 2013) ATh4A.2.
3. Metzger, T. Schwarz, A. Teisset, C. Sutter, D. Killi, A. Kienberger, R. and Krausz, F. Opt. Lett. 34, 2123 (2009).
4. Teisset, C. Y. Schultze, M. Bessing, R. Häfner, M. Prinz, S. Sutter, D. and Metzger, T. In Advanced Solid-State Lasers Congress (Optical Society of America, Washington, DC, 2013) JTh5A.1.
5. Jung, R. Tümmler, J. Nubbemeyer, Th. Will, I. Sandner, W. Erbert, G. and Pittroff, W. Disk lasers for powerful picosecond pulses with 100 Hz repetition rate. In 2nd Disk Laser Workshop (Dausinger and Giessen, Stuttgart) (2012).
6. Negel, J.-P. Voss, A. Ahmed, M. A. Bauer, D. Sutter, D. Killi, A. and Graf, T. Opt. Lett. 38, 5442 (2013).
7. Saraceno, C. J. Emaury, F. Schrieber, C. Hoffmann, M. Golling, M. Sudmeyer, T. and Keller, U. Opt. Lett. 39, 9 (2014).
8. Hornung, M. Keppler, S. Bodefeld, R. Kessler, A. Liebetrau, H. Koerner, J. Hellwing, M. Schorcht, F. Jackel, O. Savert, A. Polz, J. Arunachalam, A. K. Hein, J. and Kaluza, M. C. Opt. Lett. 38, 718 (2013).
9. Divoky, M. Tokita, S. Furuse, H. Matsumoto, K. Nakamura, Y. and Kawanaka, J. In Advanced Solid-State Lasers Congress (Optical Society of America, Washington, DC, 2013) AF2A.5.
10. Goncalves-Novo, T. Albach, D. Vincent, B. Arzakantsyan, M. and Chanteloup, J. C. Opt. Express 21, 855 (2013).
11. Ertel, K. Banerjee, S. Mason, P. Phillips, P. Greenhalgh, R. Hernandez-Gomez, C. and Collier, J. Proc. SPIE 8780, 87801W (2013).
12. Bayramian, A. Aceves, S. Anklam, T. Baker, K. Bliss, E. Boley, C. Bullington, A. Caird, J. Chen, D. Deri, R. Dunne, M. Erlandson, A. Flowers, D. Henesian, M. Latkowski, J. Manes, K. Molander, W. Moses, E. Piggott, T. Powers, S. Rana, S. Rodriguez, S. Sawicki, R. Schaffers, K. Seppala, L. Spaeth, M. Sutton, S. and Telford, S. Fusion Sci. Technol. 60, 28 (2011).
13. Giesen, A. Hugel, H. Voss, A. Wittig, K. Brauch, U. and Opower, H. Appl. Phys. B 58, 365 (1994).
14. Kränkel, C. Peters, R. Petermann, K. Loiseau, P. Aka, G. and Huber, G. J. Opt. Soc. Am. B 26, 1310 (2009).
15. Chyla, M. Miura, T. Smrz, M. Severova, P. Novak, O. Nagisetty, S.S. Endo, A. and Mocek, T. Proc. SPIE 8780, 87800A (2013).
16. Smrz, M. Miura, T. Chyla, M. Endo, A. and Mocek, T. In IEEE Photonics Conference (IEEE, Washington, 2013) MD1.4.
17. Bayramian, A. Armstrong, J. Beer, G. Campbell, R. Chai, B. Cross, R. Erlandson, A. Fei, Y. Freitas, B. Kent, R. Menapace, J. Molander, W. Schaffers, K. Siders, C. Sutton, S. Tassano, J. Telford, S. Ebbers, C. Caird, J. and Barty, C. J. Opt. Soc. Am. B 25, B57 (2008).
18. Erlandson, A. C. Aceves, S. M. Bayramian, A. J. Bullington, A. L. Beach, R. J. Boley, C. D. Caird, J. A. Deri, R. J. Dunne, A. M. Flowers, D. L. Henesian, M. A. Manes, K. R. Moses, E. I. Rana, S. I. Schaffers, K. I. Spaeth, M. L. Stolz, C. J. and Telford, S. J. Opt. Mater. Express 1, 1341 (2011).
19. Mason, P. D. Ertel, K. Banerjee, S. Phillips, P. Hernandez-Gomez, C. and Collier, J. Proc. SPIE 8780, 87801X (2013).
20. Sawicka, M. Divoky, M. Novak, J. Lucianetti, A. Rus, B. and Mocek, T. J. Opt. Soc. Am. B 29, 1270 (2012).
21. Jambunathan, V. Koerner, J. Sikocinski, P. Divoky, M. Sawicka, M. Lucianetti, A. Hein, J. and Mocek, T. Proc. SPIE 8780, 87800G (2013).
22. Launder, B. E. and Spalding, D. B. Comput. Meth. Appl. Mech. Eng. 3, 269 (1974).
23. Kays, W. M. Convective Heat and Mass Transfer 3rd edition (McGraw-Hill Inc., 1993).
24. Schlichting, H. and Gersten, K. Boundary Layer Theory 8th edition (Springer Verlag, Berlin, 2000).
25. Slezak, O. Lucianetti, A. Divoky, M. Sawicka, M. and Mocek, T. IEEE J. Quantum Electron. 49, 960 (2013).
26. Pilar, J. Divoky, M. Sikocinski, P. Slezak, O. Lucianetti, A. Kmetik, V. Bonora, S. and Mocek, T. Proc. SPIE 8780, 878011 (2013).
27. Novak, O. Miura, T. Severova, P. Smrž, M. Endo, A. and Mocek, T. In Advanced Solid-State Lasers Congress (Optical Society of America, Washington, DC, 2013) JTh2A.29.
28. Endo, A. In Source: Lithography M. Wang, (eds.) (INTECH, Croatia, 2010) chap. 9.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed