Skip to main content Accessibility help
×
Home

New scheme to trigger fusion in a compact magnetic fusion device by combining muon catalysis and alpha heating effects

  • S.D. Moustaizis (a1), P. Lalousis (a2), H. Hora (a3), Z. Henis (a4), S. Eliezer (a5) and I. Ploumistakis (a1)...

Abstract

The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of $10^{12}~\text{A}~\text{cm}^{-2}$ . The effects of ultrahigh acceleration of plasma blocks with high energy proton beams are proposed for muon production in a compact magnetic fusion device. The proposed new scheme consists of an ignition fusion spark by muon catalyzed fusion ( $\unicode[STIX]{x03BC}$ CF) in a small mirror-like configuration where low temperature D–T plasma is trapped for a duration of $1~\unicode[STIX]{x03BC}\text{s}$ . This initial fusion spark produces sufficient alpha heating in order to initiate the fusion process in the main device. The use of a multi-fluid global particle and energy balance code allows us to follow the temporal evolution of the reaction rate of the fusion process in the device. Recent progress on the ICAN and IZEST projects for high efficient high power and high repetition rate laser systems allows development of the proposed device for clean energy production. With the proposed approaches, experiments on fusion nuclear reactions and $\unicode[STIX]{x03BC}$ CF process can be performed in magnetized plasmas in existing kJ $/$ PW laser facilities as the GEKKO-LFEX, the PETAL and the ORION or in the near future laser facilities as the ELI-NP Romanian pillar.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New scheme to trigger fusion in a compact magnetic fusion device by combining muon catalysis and alpha heating effects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      New scheme to trigger fusion in a compact magnetic fusion device by combining muon catalysis and alpha heating effects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      New scheme to trigger fusion in a compact magnetic fusion device by combining muon catalysis and alpha heating effects
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: S. D. Moustaizis, Technical University of Crete, Lab of Matter Structure and Laser Physics, Chania, Crete, Greece, 73100. Email: moustaiz@yahoo.gr

References

Hide All
1. Mourou, G. Tajima, T. and Bulanov, S. Rev. Mod. Phys. 78, 309 (2006).
2. Tajima, T. and Mourou, G. Phys. Rev. ST Accel. Beams 5, 0310301 (2002).
3. Hora, H. Badziak, J. Read, M. N. Li, Y. T. Liang, T. J. Liu, H. Shang, Z. M. Zhang, J. Osman, F. Miley, G. H. Zhang, W. Y. He, X. T. Peng, H. S. Glowacz, S. Jablonski, S. Wolowski, J. Skladanowski, Z. Jungwirth, K. Rohlena, K. and Ullschmied, J. Phys. Plasmas 14, 072701 (2007).
4. Hora, H. Proc. SPIE 8780, 878024 (2013).
5. Sauerbrey, R. Phys. Plasmas 3, 4712 (1996).
6. Hora, H. Physics of Laser Driven Plasmas (Wiley Interscience, 1981), see Fig. 10.18b.
7. Hora, H. Laser Particle Beams 27, 207 (2009).
8. Lalousis, P. Hora, H. Eliezer, S. Martinez-Val, J.-M. Moustaizis, S. Miley, G. H. and Mourou, G. Phys. Lett. 339, 885 (2013).
9. Moustaizis, S. Lalousis, P. and Hora, H. Proc. SPIE 8780, 878029 (2013).
10. Hora, H. Badziak, J. Boody, F. P. Höpfl, R. Jungwirth, K. Kralikowa, B. Kraska, J. Laska, L. Parys, P. Perina, V. Pfeifer, M. Rohlena, K. Skala, J. Ullschmied, J. Wolowski, J. and Woryna, E. Opt. Commun. 207, 333 (2002).
11. Eliezer, S. Tajima, T. and Rosenbluth, M. N. Nuclear Fusion 27, 527 (1987).
12. Cohen, J. S. Nucl. Instr. Meth. B 42, 419 (1989).
13. Cohen, J. S. Nucl. Instr. Meth. Phys. Res. B 42, 419 (1989).
14. Christopoulos, A. Hora, H. Stening, R. J. Loeb, H. and Scheid, W. Nucl. Instr. Meth. A 271, 178 (1988).
15. Hora, H. and Loeb, H. W. Zeitschrift für Flugwissenschaft und Weltraumforschung 10, 393 (1986).
17. Esirkepov, T. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phys. Rev. Lett. 92, 175003 (2004).
18. Mourou, G. Brocklesby, B. Tajima, T. and Limpert, J. Nat. Photon. 7, 58 (2013).
19. Negoita, F. Roth, M. Thirolf, P. G. Tudisco, S. Hannachi, F. Moustaizis, S. Pomerantz, I. McKenna, P. Fuchs, J. Sphor, K. Acbas, G. Anzalone, A. Audebert, P. Tatulea, B. Turcu, I. C. E. Versteegen, M. Ursescu, D. Gales, S. and Zamfir, N. V. Rom. Rep. Phys. 68, S37 (2016).
20. Bungau, A. Cywinski, R. Bungau, C. King, P. and Lord, J. Phys. Rev. ST Accel. Beams 16, 014701 (2013).
21. Bungau, A. Cywinski, R. Lord, J. King, P. and Bungau, C. Physics Procedia 30, 12 (2012).
22. Bungau, A. Cywinski, R. Bungau, C. King, P. and Lord, J. in Proceedings of IPAC’10 (2010), p. 259.
23. Ferrari, A. Sala, P. R. Fasso, A. and Ranft, J. CERN-2005-010, INFN TC_05/11 (2005).
24. Turcu, I. C. E. Balascuta, S. Negoita, F. Jaroszynski, D. and Mckenna, P. AIP Conf. Proc. 1645, 416 (2015).
25. Azechi, H. J. Phys. Conf. 717, 012119 (2015).
26. Fujioka, S. Zhang, Z. Yamamoto, N. Ohira, S. Fujii, Y. Ishihara, K. Johzaki, T. Sunahara, A. Arikawa, Y. Shigemori, K. Hironaka, Y. Sakawa, Y. Nakata, Y. Kawanaka, J. Nagatomo, H. Shiraga, H. Miyanaga, N. Norimatsu, T. Nishimura, H. and Azechi, H. Plasma Phys. Contr. Fusion 54, 124042 (2012).
27. Hopps, N. Danson, C. Duffield, S. Egan, D. Elsmere, S. Girling, M. Harvey, E. Hillier, D. Norman, M. Parker, S. Treadwell, P. Winter, D. and Bett, T. Appl. Opt. 52, 3597 (2013).
28. Blanchot, N. Behar, G. Berthier, T. Busserole, B. Chappuis, C. Damiens-Dupont, C. Garcia, P. Granet, F. Grosset-Grange, C. Goossens, J.-P. Hilsz, L. Laborde, F. Lacombe, T. Laniesse, F. Lavastre, E. Luce, J. Macias, F. Mazataud, E. Miquel, J. L. Néauport, J. Noailles, S. Patelli, P. Perrot-Minot, E. Present, C. Raffestin, D. Remy, B. Rouyer, C. and Valla, D. EPJ Web of Conferences 59, 07001 (2013).
29. Casner, A. Caillaud, T. Darbon, S. Duval, A. Thfouin, I. Jadaud, J. P. LeBreton, J. P. Reverdin, C. Rosse, B. Rosch, R. Blanchot, N. Villette, B. Wrobel, R. and Miquel, J. L. High Energy Density Physics 17, 2 (2015).
30. Danson, C. Hillier, D. Hopps, N. and Neely, D. High Power Laser Sci. Eng. 3, e3 (2015).
31. Mcguire, T. J. Active cooling of structures immersed in plasma, US Patent 2014/0301517 (2014).
32. Mcguire, T. J. Heating plasma for fusion power using magnetic field oscillation, US Patent 2014/0301519 (2014).
33. Hora, H. Method for generating electrical energy by laser-based nuclear fusion and laser fusion reactor, Patent WO 2015/144190 A1 (2015).
34. Moustaizis, S. D. Auvray, P. Hora, H. Lalousis, P. Larour, J. and Mourou, G. AIP Conf. Proc. 1462, 191 (2012).
35. Lalousis, P. Throumoulopoulos, G. and Poulipoulis, G. in 43rd EPS Conference (2016), paper P5.069.
36. Frank, F. C. Nature 160, 525 (1947).
37. Alvarez, L. W. Bradner, H. Crawford, F. S. Jr. Crawford, J. A. Falk-Vairant, P. Good, M. L. Gow, J. D. Rosenfeld, A. H. Solmitz, F. Stevenson, M. L. Ticho, H. K. and Tripp, R. D. Phys. Rev. 105, 1127 (1957).
38. Sakharov, A. D. Report of the Physics Institute (USSR Academy of Sciences, 1948).
39. Sakharov, A. D. Collected Scientific Works (Dekker, 1982).
40. Jackson, J. D. Phys. Rev. 106, 330 (1957).
41. Petitjean, C. Fusion Engng Design 11, 255 (1989).
42. Eliezer, S. and Henis, Z. Fusion Technol. 26, 46 (1994).
43. Tajima, T. Eliezer, S. and Kulsrud, R. M. in Proc. Muon Catalyzed Fusion, Sanibel Island, FL, Jones, S. E., Rafelski, J. and Monkhorst, H. J.  (eds) (American Institute of Physics, 1989).
44. Petrov, Yu. V. Nature 285, 466 (1980).
45. Nagamine, K. Introductory Muon Science (Cambridge University Press, 2003).
46. Ishida, K. Nagamine, K. and Matsuzaki, T. J. Phys. G: Nucl. Part. Phys. 29, 2043 (2003).
47. Gershtein, S. S. Petrov, Yu. V. Ponomarev, I. Somov, L. N. and Faifman, M. P. Sov. Phys. JETP 51, 1053 (1980).
48. Harms, A. A. Schoepf, K. F. Miley, G. H. and Kingdon, D. R. Principles of Fusion Energy: An Introduction to Fusion Energy for Students of Science and Engineering (World Scientific, 2000).
49. Kimura, S. and Bonasera, A. arXiv:physics/0605206 (2006).
50. Stodden, C. D. and Monkhorst, H. J. Phys. Rev. A 41, 1281 (1990).
51. Hu, C.-Y. Phys. Rev. A 49, 4481 (1994).
52. Bungau, A. Cywinski, R. Bungau, C. King, P. and Lord, J. in Proceedings of IPAC’10 (2010), p. 250.
53. Bungau, A. Cywinski, R. Bungau, C. King, P. and Lord, J. in Proceedings of IPAC’10 (2010), p. 247.
54. Breunlich, W. Nucl. Phys. A 508, 3c (1990).
55. Rafelski, J. and Harvey, D. Particle Accelerator 37–38, 409 (1992).
56. Pahlavani, M. R. and Motevalli, S. M. Acta Phys. Polonica B 40, 2 (2009).
57. Eliezer, S. Hora, H. Korn, G. Nissin, N. and Martinez Val, J. M. Phys. Plasmas 23, 050704 (2016).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

New scheme to trigger fusion in a compact magnetic fusion device by combining muon catalysis and alpha heating effects

  • S.D. Moustaizis (a1), P. Lalousis (a2), H. Hora (a3), Z. Henis (a4), S. Eliezer (a5) and I. Ploumistakis (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed